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Abstract The powerful mathematical tools developed for the study of large scale
reaction networks have given rise to applications of this framework beyond the scope of
biochemistry. Recently, reaction networks have been suggested as an alternative way
to model social phenomena. In this “socio-chemical metaphor” molecular species
play the role of agents’ decisions and their outcomes, and chemical reactions play
the role of interactions among these decisions. From here, it is possible to study the
dynamical properties of social systems using standard tools of biochemical modelling.
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In this work we show how to use reaction networks to model systems that are usually
studied via evolutionary game theory. We first illustrate our framework by modeling
the repeated prisoners’ dilemma. The model is built from the payoff matrix together
with assumptions of the agents’ memory and recognizability capacities. The model
provides consistent results concerning the performance of the agents, and allows for
the examination of the steady states of the system in a simple manner. We further
develop a model considering the interaction among Tit for Tat and Defector agents.
We produce analytical results concerning the performance of the strategies in different
situations of agents’ memory and recognizability. This approach unites two important
theories and may produce new insights in classical problems such as the evolution of
cooperation in large scale systems.

Keywords Reaction networks · Evolutionary game theory · Cooperation ·
Tit for Tat

Mathematics Subject Classification (2000) 91A22 · 91A13 · 92B · 93D20 · 37F15

1 Introduction

A reaction network consists of a set of possible units (species) that can exist in a system,
and the interactions (reactions) among these species. Discrete or continuous dynamical
laws are imposed to study the evolution of a reaction network, e.g. the changes in the
species’ concentrations with time (Feinberg and Horn 1974; Gillespie 2007). Since the
seventies, a variety of mathematical tools grounded in dynamical systems, complexity
theory, abstract algebra, and others, have been applied to the study of large scale
biochemical systems where numerical methods and computational simulations do not
suffice (Kacser and Burns 1973; Feinberg and Horn 1974; Reddy et al. 1993; Fontana
and Buss 1994; Schilling and Palsson 1998; Schuster et al. 1999; Dittrich and Speroni
di Fenizio 2008; Österlund et al. 2011).

The success of these applications has motivated the use of reaction networks as
a framework to model systems in domains beyond biochemistry such as ecology,
theoretical and applied computer science, among others (for a review see Dittrich
2009). Recently, a reaction network model of the political system has been developed
by Dittrich and Winter (2007). They were able to identify the stable social structures
of this particular system using tools from a novel reaction network scheme called
chemical organization theory (Dittrich and Speroni di Fenizio 2008). The fundamental
difference of this approach, with respect to other social system approaches, is that the
unit of modeling are the agents’ communications (e.g. decisions) instead of the agents
themselves. Molecular species represent communications, and the interaction of two
or more communications consume and produce new communications. A social stable
structure in this setting corresponds to a set of communications that self-maintains in
time, analogous to the biological notion of autopoietic structure (Maturana and Varela
1974; Razeto-Barry 2012). Interestingly, the first scholar arguing that stable social
structures are not formed by agents, but communications (in this case represented by
decisions) was Luhmann (1986) in the context of sociology, and Dittrich and Winter
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Reaction networks and evolutionary game theory 183

(2007) formalized this idea using reaction networks. This suggests that the modelling
of social systems by means of reaction networks may open a path for a promising
theoretical treatment of large scale social and biological systems.

On the other hand, Game Theory has been one of the most important theoretical
frameworks to analyze social problems in economics, political sciences, anthropol-
ogy and biological and cultural evolution, under the label of evolutionary game theory
(EGT) (Binmore 2007; Gintis 2008; Rasmusen 2007; Taylor 1995; Vincent and Brown
2007; Nowak 2006a; Bowles and Gintis 2011). Particularly, EGT has proved to be one
of the most powerful conceptual and practical approaches to understand the classical
problem of the evolution of cooperation (Maynard Smith 1982; Axelrod 1984, 1997).
Nowak (2006b) reviews five mechanisms that may explain the evolution of coopera-
tion, all of them based in EGT. The simple formulation of these mechanisms permit
the development of analytical expressions which predict under what conditions coop-
eration may surge. Nevertheless, in most of cases analytical results are impossible or
very difficult to obtain in social and biological problems. Models are then studied via
simulations, even for situations where simple strategies are interacting (Nowak and
May 1992; Nowak and Sigmund 1993; Axelrod 1997). Social and biological models
based on Game Theory take agents as fundamental units (Axelrod 1997; Hofbauer
and Sigmund 1998). The latter is a stringent condition that may be generalized using
reaction networks.

Here we illustrate how to model the EGT systems using reaction networks. Our
aim is to apply, for the first time as far as we know, analytical tools used in reaction
networks to study Game Theory. Furthermore, we show the similitudes and differ-
ences between reaction networks and agent based approaches. Emphasis is made on
the capacity of reaction networks to generate models that are not based in the agents
as the fundamental unit, but in their communications, that require higher abstraction
but are more general (Luhmann 1995; Dittrich and Winter 2007).

The paper is organized as follows: In Sect. 2 we introduce the standard definitions
of reaction networks. In Sect. 3 we illustrate the socio-chemical metaphor, modelling
the repeated prisoner’s dilemma using reaction networks. In Sect. 4 we build a reaction
network model for a system with agents following Tit for Tat and Defector strategies
(Axelrod 1984) considering different situations of agents’ recognizability and memory
capacities, and we study the performance of the strategies for each case applying
reaction networks analysis methods. We conclude and present a discussion of the
methodology introduced in this work in Sect. 5.

2 Reaction networks

In a reaction network we deal with two types of objects: molecular species (from now
on species) and reactions. Species are the elements of a species set M = {m1, . . ., mn},
and each reaction R is modeled by a pair R = (A, B), where A, B ∈ PM (M ), and
PM (M ) denotes the set of multisets formed by elements in M . A multiset A is
defined by a pair (M , ηA), where the function ηA : M → N0 states the number of
occurrences ηA(m) (or multiplicity) of m in A.
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To be consistent with the notation used in chemical literature, we will denote the
multiset A by A =∑

mi ∈M ai mi , i.e. each species mi is preceded by its multiplicity
ηA(mi ) denoted by ai . Moreover, we will refer the reaction R =(A, B) by R = A → B.

From now on, let R = {R1, . . . , Rr }, where Ri = Ai → Bi , Ai = ai1m1 +
· · · ainmn and Bi = bi1m1 + · · · binmn , for i = 1, . . . , r . Now we can define a
reaction network, which captures the notion of a chemical system by specifying the
species and reactions that may occur.

Definition 1 A reaction network is a pair 〈M ,R〉.

2.1 Dynamical aspects

In a reaction network, the occurrence of reactions leads to a dynamical process of
consumption and production of species. In order to represent this process, we introduce
the stoichiometric matrix S = (si j ) associated to 〈M ,R〉. S is a n × r matrix, where
n is the number of species and r is the number of reactions in the reaction network,
and si j = b ji − a ji is the stoichiometric coefficient of species mi in the reaction R j .
If si j is positive, then mi is produced by reaction R j . If si j is negative, then mi is
consumed by reaction R j . Thus, the stoichiometric matrix represents how the species
are consumed and produced by the reactions. The stoichiometric matrix is at the core
of the reaction network analysis (Schuster et al. 1999; Schilling and Palsson 1998),
and its properties have been extensively studied (Kacser and Burns 1973; Heinrich
and Rapoport 1974).

To model the occurrence of reactions in a reaction network, we introduce a non-
negative flux vector v = (v1, . . . , vr ). For each i = 1, . . . , r , we have that vi represents
the rate of occurrence of reaction Ri in the reaction network. Thus, the application of
v on the stoichiometric matrix S represents a reaction process where the rate of the
reaction Ri in the system is given by vi for i = 1, . . . , r . Hence, it is natural to define
the production rate vector by f = Sv. For i = 1, . . . , n, we have that fi is the rate of
production of the species mi in the reaction process determined by v.

The usual manner to describe the dynamics of the species concentrations x =
(x1, . . . , xn), is by applying the mass-action kinetics law. This law assumes that for
each i = 1, . . . , r , the i th coordinate vi of the flux vector depends on the concentration
of the species and a non-negative vector k = (k1, . . . , kr ) of reaction rates as follows

vi = ki

r∏

j=1

x
a ji
j (1)

Thus, the dynamics of the species’ concentration is described by the following system
of ODEs

ẋ = Sv(x, k), (2)

We call the system (2) a chemical reaction system.
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Remark The dynamical aspects of a reaction network can also be defined in terms
of deterministic or stochastic discrete processes. We will stick here to the continuous
schema for illustrative purposes. However, the discrete and continuous schemas are
complementary (Heiner et al. 2008).

3 Modelling evolutionary games using reaction networks

3.1 The chemical metaphor in social systems

Luhmann introduced the notion of communication as the basis of societies’ structur-
ing and ordering (Luhmann 1986; Razeto-Barry and Cienfuegos 2011). Luhmann’s
concept of communication is defined as the flow produced by the exchange of social-
symbols. These symbols depend on the system. For example, for simple economical,
legal and political systems, the communication flow is done through money, justice
and power respectively. In a general case, all these systems have some degree of
entanglement, and hence, communications in one system may affect the others.

Luhmann’s communication concept has been formalized and applied by Dittrich
and Winter (2007) in a toy-model of the political system. They define 13 communica-
tions, e.g. social movement demands (sd), social movement members (sm), potential
collective binding decisions (pcbd), and a set of 20 reactions to model the interactions
among these communications. For example, the reaction R = sm + pcbd → sd mod-
els that social movement members decisions concerning a potential collective binding
decision implies social movement demand decisions. The molecule pcbd might corre-
spond to a potential law such as increase the tax, sd corresponds to the communications
that the social movement members discuss or spread (for example within social net-
works), and sm corresponds to a social movement demand decision (e.g do not increase
the tax), that may be expressed as a protest, or by other actions.

In chemical systems, species are determined by their concentration. In these models,
the concentration of species x represents the visibility of the communication x in the
communication system as a whole. To illustrate this clearly, Dittrich and Winter’s
social model also considers the reaction sd → pcbd , which means that potential
collective binding decisions can be generated from (and proportional to) the social
movement demands, and add decaying reactions for each communication, to model
that communications become less influential with time.

This communication species based model is essentially different to any agent based
model. It neglects the particular actions that each agent takes, and focuses on the visi-
bility of the communications (decisions) that are present in the system. This approach
entails the discovery of the most visible communications, and the groups of commu-
nications that are able to self-replicate by the occurrence of the reactions, and hence
become stable in time. These sets of self-replicable communications may represent
higher level communication structures such as rebel or repressive social tendences.
Hence, the socio-chemical metaphor provides an elegant framework to study emergent
structures in social systems.

Note that in Dittrich’s model, each type of molecular species represents a decision.
In principle however, molecular species can represent other kinds of elements required
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for the occurrence of the interactions. In this paper we will consider two types of such
elements: Decision and payoff species, and we will refer in general to such elements
as communications.

3.2 Agents, memory and recognizability

One important difference between the communication species based model presented
here and the agent based models resides at the cognitive capacities that the unit of
modeling hold in each paradigm. In the agent based models, the unit of modeling (the
agent) may possess memory, recognize common phenotypes (e.g. green beard effect,
Gardner and West 2009), or hold other complex cognitive abilities associated to its
interaction process (Bowles and Gintis 2011; Hamilton 1964). These abilities are the
basis of important mechanisms of natural selection such as group or kin selection. In
contrast, communication species have no cognitive abilities. Instead, this paradigm
identifies the possible interactions that occur within agents that have these complex
abilities, and then builds a list of “reactions” that establish the exchange of the elements
involved in these interactions (see Fig. 1). Thus, social complexity is introduced in the
reactions rather in the intrinsic properties of the interacting species. This is coherent
with the Luhmannian framework which emphasizes that social structures can be repre-
sented only by the visible interactions among agents rather by the intrinsic properties
of agents (Luhmann 1995).

Fig. 1 Contrast between agent-based (bottom) and decision species (top) models. The interaction among
agents corresponds to a vessel of decision species interacting, and the payoff matrix corresponds to a set of
reactions which consumes a pair of decisions to produce the payoff of each decision and two new decisions
determined by the strategies
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We will show that when we are interested in population dynamics and long-term
changes, memory and recognizability between agents can be represented by certain
kinds interaction rules between communications. Therefore, the representation of the
intrinsic properties of the agents can be substituted by the representation of such rules
of communication.

The ability that agents have to recognize and remember each other implies that the
interactions between two or more types of strategy (e.g. one type of strategy invading
another) can be studied from the specific agent-agent interactions that occur among
all the types of agent together (Axelrod 1984). Thus, the extent to which agents can
recognize other agents is a determinant element in agent based modeling. This feature
has been explored in EGT (Nowak 2006b) in the context of the evolution of coop-
eration, where five important mechanisms of recognizability have been formalized
(among members of the same family, of the same group, of the same network, of the
same society, of past interactions).

Situations of partial or null recognizability among agents are practically equivalent
to situations when agents have failures in memory (e.g. an agent does not remember
what its opponents did) or make involuntary mistakes (an agent makes a move when
it tried to make another one) (Axelrod 1984). Moreover, it has been argued based
on computer simulations and real life examples, that a mechanism called generalized
reciprocity might be useful to explain the evolution of cooperation in small groups
(Pfeiffer et al. 2005). In this mechanism agents do not necessarily recognize the agents
they are interacting with, and base their actual decision only on the result of their last
interaction (no matter with whom it was). Thus, generalized reciprocity does not
assume advanced cognitive abilities of the agents. Hence, it is a powerful mechanism
to explain natural behaviors in animals with little cognitive abilities.

In our framework, communication species are the fundamental units of modelling
instead of agents. Hence, when decision species interact there is no identification of
the agent that takes each decision. This is because our unit of modelling (decision
species) does not possess memory. However, it is possible to simulate the long term
effects of memory in a closed system (see Sect. 4.3), and establish the recognition
among different types of agents (strategies) in our framework (see Sect. 4.4). Strat-
egy recognition is an instance of recognition used in studies on downstream indirect
reciprocity, such us reputation recognition, which require high level cognitive capac-
ities, and by which probably is only applicable to humans (see West et al. 2011). An
agent type is determined by the strategy that performs, and each strategy determines
its decisions according to the possible interactions that occur in the agents’ setting. To
model the interaction of different types of agents, we label each decision according to
two features: the strategy (type of agent) from which the decision comes from, and the
type of decision that the species represents (e.g. cooperate or defect). From here, the
species interactions (reactions) are built to represent the possible interactions among
the decisions of each strategy (see Fig. 1).

Despite the differences between the agent and communication species approaches
concerning recognizability, we will show that the initial motivation of EGT, i.e. to
study the interactions among different types of agents, can be still grasped by our
approach. We claim that the communication species approach is a complementary
setup to the agent based approach. It provides the means to study the qualitative
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dynamics of the strategies, i.e. analytic results concerning the asymptotic disappearing
or growth of the concentration decisions in the system, as well as steady states where
different decisions balance their concentrations. This complementarity is analogous
to the mutual feedback between reaction networks analysis and in silico chemical
simulations (Wiechert 2002; Österlund et al. 2011).

3.3 Modelling decisions and payoffs using molecular species

In EGT, each player (or agent) has a strategy, i.e. a set of rules that determines how
the player is going to play. In EGT, strategies are not the result of a rational decision
process by the players, as in classical Game Theory, but may be imposed by the
genotype or cultural influence that each player has (Richerson and Boyd 2005; Bowles
and Gintis 2011). EGT studies scenarios of frequency dependent selection: the players
payoffs depend on the composition of the population. With an appropriate system of
differential equations, it is possible to represent the changes of the populations of
the different types of agents in time. Although there are many ways to construct this
system, the replicator equation (Taylor and Jonker 1978) is widely used, essentially
for its simplicity and because its captures our intuition: the proportion of the strategies
that have higher payoff than the average grows, while the proportion of the strategies
that perform under the average diminishes.

Note that the replicator equation implies a reaction network: it can be written as
ẋk = xk( fk(x)−φ(x)), where xk is the proportion of players using strategy k, fk(x) is
their fitness and φ(x) = ∑n

i=1 xi fi (x) the average fitness of the population (dilution
flow in chemical reactions) represented by x = (x1, . . . , xn). The reaction network
consists of decay reactions of the form xk → ∅ due to the dilution term −xkφ(x).

The production term xk fk(x) implies catalytic reactions of the form xk + i1 +
. . . im → 2xk + i1 + . . . im , where i1, . . . im are those species that are necessary for
k to replicate, i.e., f (x) is positive if these species have positive concentrations in x .
When the replicator equation is applied in EGT, a node of the network represents an
agent type, i.e., a strategy, and xk the amount of agents playing strategy k. This is
fundamentally different to the approach followed here, where a node of the reaction
network represents a decision or payoff species.

The canonical example of a two player game is the prisoner’s dilemma. In this
game, two prisoners are kept in different rooms and each is offered the same deal:
if one testifies (defects) against the other and the other remains silent (cooperates),
the former goes free while the latter receives a ten years sentence. If both remain
silent, they get each a one year sentence, and if they both testify against the other,
both prisoners get a seven year sentence. The game, in its more general form, can
be represented using a payoff matrix (see Table 1), where b represents the benefit of

Table 1 Payoff table for the
interaction of cooperative and
defector decisions

Gain/Loss D C

D (0, 0) (b, −c)

C (−c, b) (b − c, b − c)
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receiving a cooperative decision and c the cost of cooperating. In this setting, one
may model a general interaction where two entities can cooperate or defect with each
other. It is easy to note that in a one shot game, rational players will defect. From an
evolutionary perspective, non rational defectors have a higher fitness than non rational
cooperators and thus the former would be favored by natural selection (see Nowak
2006b for a complete discussion). It is not obvious then how cooperation may surge.
The prisoner’s dilemma has proved to be the best framework to study under what
condition cooperation may be favored over defection (Rapoport and Chammah 1965;
Axelrod 1984; Nowak 2006b).

In the following, we will represent the player’s possible decisions (cooperate or
defect), and the payoff they get (it could represent years or a certain good) by species.
Let C, D be the species representing the cooperative and defector decisions respec-
tively. The interaction of two players is equivalent to a chemical reaction where the
reactants are two decision species. The reaction produces a payoff for each decision:
we define the species GC , G D to represent the positive payoff for the cooperative
and defector decisions respectively, analogously LC , L D represent the negative pay-
off of C and D. We consider two different types of species to model the positive
and negative payoffs to avoid having negative concentrations on the species repre-
senting the payoff. Therefore, the set of species that models the prisoner’s dilemma
is M = {C, D, GC , G D, LC , L D}. We develop the details of the model in the next
section.

3.4 The iterated prisoner’s dilemma

We will build the set of reactions of the prisoner’s dilemma based on the payoff table
shown in Table 1. As stated previously, the reactants of each reaction correspond to a
pair of decisions. Thus we have four possible reactions with the two decisions C, D:
(C, C), (D, D), (C, D) and (D, C).

For simplicity, we will assume that the concentration of each type of decision C
and D is fixed in the system. However, the reactions will generate species representing
negative and positive profit. Therefore, in this case we have a set of decisions generating
species representing positive or negative payoffs by their interactions. We are interested
in determining which strategy performs best in time (i.e. gains a higher payoff) and
thus would be favored, for example, by natural selection.

The interaction between two cooperative decisions is modeled by the reaction

R∗
1 = 2C → 2C + 2bGC + 2cLC , (3)

this means that when two cooperative decisions interact, 2b units of positive profit and
2c units of negative profit are generated. Analogously, the other three interactions are
represented by the reactions

R′
2 = D + C → D + C + bG D + cLC , (4)

R′′
2 = C + D → C + D + bG D + cLC (5)

R∗
3 = 2D → 2D. (6)
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Note that in R∗
3 the reactants are equal to the products. In chemistry this is called a zero

stoichiometry reaction. These reactions may be excluded from the system, given that
when they occur, the state of the system is not altered. Hence, the reaction network
that models this system is 〈{C, D, GC , G D, LC , L D}, {R∗

1 , R′
2, R′′

2 }〉.

3.5 Dynamic analysis

To study the dynamics of the reaction network built above, we derive its chemical
reaction system (2). Therefore, we have that the systems’ dynamics is governed by
the following system of differential equations:

Ċ = Ḋ = L̇ D = 0,

ĠC = 2bk1C2,

Ġ D = b(k′
2 + k′′

2 )DC,

L̇C = 2ck1C2 + c(k′
2 + k′′

2 )DC.

(7)

where k1, k′
2, k′′

2 correspond to the reaction rates of R∗
1 and R′

2, R′′
2 respectively. Recall-

ing that the population of each decision does not vary in time, we will study which
decision generates more profit depending on the values of b and c, the initial concen-
trations C(0) = C0, D(0) = D0, and the reaction rates k1, k′

2, k′′
2 .

We define the profit generated by one cooperative decision as PC = GC −LC
C .

Analogously, the profit generated by one defector decision is given by PD = G D−L D
D .

Solving the Eq. (7) we have that

PC (t) = 2k1(b − c)C0t − (k′
2 + k′′

2 )cD0t
PD(t) = b(k′

2 + k′′
2 )C0t

(8)

From (8) it is clear that in the absence of a mechanism that makes cooperative inter-
actions more likely to occur, i.e. when k1 = k′

2 = k′′
2 , the Defector strategy is more

profitable than the Cooperator strategy. Let us now assume that k′
2 = k′′

2 = k2, sup-
posing the symmetry of the reactions R′

2 and R′′
2 (a general assumption in EGT), and

that k1 and k2 are not equal. We have that the profit ratio Pr = PC
PD

would favour the
cooperation if and only if Pr > 1. This condition is equivalent to

r >
c

b
, (9)

where r = (k1−k2)C0
k1C0+k2 D0

. Therefore, k1 > k2 is a necessary (but not sufficient) condition
for cooperative decisions being more profitable than defector decisions. The system’s
conditions that make k1 > k2 may be the consequence of kin or group selection in a
standard EGT setting (Nowak 2006b). Remarkably, Eq. (9) recovers the same kind of
relation for the evolution of cooperation, the comparison of a well defined quantity
r and the benefit b and cost c of cooperating, that has been found using different
approaches (Nowak et al. 2004). Moreover, Eq. (9) allows us to understand why the
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Fig. 2 Example of conditions that favor cooperation. The x-axis corresponds to the parameter p = k1
k2

,
the y-axis to the left-hand side of Eq. (10). The large dashed curve corresponds to the case n = 0.1, i.e.
D = 0.1C , and the short dashed curve to n = 10, i.e. 0.1D = C . The solid horizontal line at 0.5 is a
reference for the case λ = 0.5. Hence, cooperation is more profitable for the values of p in which the
curve is above 0.5. In these invasion settings, where the concentration of the invasor is 10 % of the invaded
concentration, cooperative decisions resist the invasion of defectors when p > 2, and are able to invade a
group of defectors when p > 12.

emergence of cooperation is non-trivial and requires specific mechanisms: First, let
k1 = pk2 and λ = c

b , where p > 1 > λ (and hence requiring k1 > k2 and b > c)
Secondly, by setting D0 = nC0 we have that 0 < n 	 1 corresponds to the

situation when a small number of defector decisions invades a cooperators decision
system, and n 
 1 correspond to the invasion of cooperators to defectors. Under these
conditions Eq. (9) becomes

p − 1

p + n
> λ. (10)

When n 	 1 (and thus when defector invades) we have that (10) can be approximated
by p−1

p > λ. On the other hand, when n 
 1 (and thus when cooperator invades)

we have that (10) can be approximated by p−1
n > λ. Hence, the condition that allows

cooperators to resist an invasion of defectors is less stringent than the condition in
which cooperators invade defectors (see Fig. 2 for details). Thus, our approach can be
used to study the changes in the profit relationships when the system is perturbed with
a small concentration of new decisions. Hence, this analysis may serve as the basis
of an analogous to the notion of evolutionarily stable strategies (ESS), an important
concept in EGT (Weibull 1995).
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4 Tit for Tat versus Defector

Tit for Tat strategy was introduced by Anatol Rapoport, during the first computational
tournament of strategies playing the iterated prisoner’s dilemma (Axelrod 1984). A Tit
for Tat agent cooperates always in its first interaction with another agent and afterwards
imitates its last opponent’s move, i.e. it cooperates when the opponent cooperates and
defects when the opponent defects. This strategy is quite easy to implement because
the agent only needs to remember the last play of the other agents. In this sense,
Tit for Tat does not require advanced cognitive capacities (even guppies use this
strategy, Dugatkin 1992). It is a cooperative strategy based in reciprocity. Under certain
conditions, Tit for Tat is an ESS, and it has been proven empirically, via simulations,
that it is strong against many other strategies when they are all interacting together
(Axelrod 1984). We will apply our model to the interaction between Tit for Tat agents
and agents behaving according to a strategy that always defect (Defector).

4.1 Decision species and initial concentrations

Recall that we will label decision species according to both the strategy and decision
they represent. Thus, we have three types of decisions:

1. TC , Tit for Tat cooperates,
2. TD , Tit for Tat defects,
3. D, Defector defects.

Analogous to the previous section, we define molecules GT , LT , G D, L D to model
the positive and negative profits of Tit for Tat and Defector strategies respectively,
and we assume that no strategy has accumulated previous profit. Thus we have that
GT (0) = LT (0) = G D(0) = L D(0) = 0. Note that Defector agents never cooperate,
thus according to the payoff matrix (see Table 1) we have that L D(t) ≡ 0. Moreover,
as Tit for Tat strategy always cooperate in the first interaction, we have that TD(0) = 0.

In the standard agent-based setup of this system, two Tit for Tat agents will always
cooperate, and they are able to recognize a Defector agent during the rest of the game
once they interact with it (they will never cooperate more than once with the same
Defector). Settings of partial or null agent-recognizability deviate from this situation.
For example, two Tit for Tat agents can mutually defect or they can cooperate twice
in a row with the same Defector agent if they cannot recognize the other agent, or at
least the other agent’s strategy.

Depending on the cognitive capacities of the agents (memory, agent or strategy
recognizability, etc.), the reactions will represent the different kinds of interactions that
are necessary to model the system. Hence, the elements participating in the reaction
(the decision species) may refer to different conditions required for the occurrence of
such interactions (e.g. if the agent cooperates or defects having recognized the other
agent). Moreover, the reaction rates will be used to calibrate the relative frequencies
at which the interactions occur.

In the remaining of this section we will show how to build a reaction network (and
its associated chemical reaction system) that models the interaction of Tit for Tat and
Defector agents in three different situations of memory and recognizability, and we
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will illustrate how to study dynamical properties in each case applying methods from
reaction networks.

4.2 Non-recognizability

4.2.1 Building the reaction network

In this case agents cannot recognize other agents. This is an oversimplified situation.
Indeed, a Tit for Tat agent, as it is defined in the literature (Axelrod 1984), needs
to recognize its opponent and remember the decision the opponent took in their last
interaction to decide its action. Hence, it is not technically correct to call this behaviour
as an equivalent to the Tit for Tat strategy, but this kind of strategy may be associated
to the simple upstream indirect reciprocity (Nowak and Rosch 2006), and illustrates
our model in a simple scenario.

Note that Tit for Tat agents always cooperate in their first interaction, thus if two
Tit for Tat agents encounter the first time they interact, we can model their interaction
by the interaction of two Tit for Tat cooperative decisions, generating the payoff of
two cooperative decisions. Moreover, as Tit for Tat strategy imitates its last opponent
behaviour for the next interaction we have that this interaction is modeled by the
reaction

R1 = 2TC → 2TC + 2bGT + 2cLT .

In general, when two cooperative Tit for Tat agents interact, reaction R1 describes their
interaction. It is important to emphasize that we are not assuming any recognition
process here. The only assumption we made is that cooperative decisions interact
cooperatively. Hence their interaction is independent of the recognition situation.

Analogously, if a Tit for Tat agent interacts for first time with a Defector we have
that their interaction corresponds to the reactions

R′
2 =TC +D →TD +D+bG D +cLT , and R′

2
′ = D+TC → D+TD +bG D +cLT .

In R′
2 and R′′

2 the Tit for Tat agent cooperates, thus a cooperative decision TC is part
of the reactants, but it switches to TD in the products because its opponent defects.

The next case is a Tit for Tat agent that has interacted only with cooperative Tit for
Tat agents (TC ) and encounters a Tit for Tat agent that defects (TD). This interaction
is modeled by the reaction

R′
3 =TC +TD →TD +TC +cLT +bGT and R′′

3 =TD +TC →TC +TD +cLT +bGT .

Note that the decision reactants and products in R′
3 and R′′

3 are equal. This is because
decision TC switches to TD and TD switches to TC (because Tit for Tat imitates the
its last opponent’s behaviour on the next interaction).
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The three remaining cases entail zero stoichiometry reactions (as in reaction (6)):
First, two Tit for Tat agents can interact in a non-cooperative way (the reactants are two
TD). Secondly, a defector Tit for Tat agent (decision TD) may interact with a defector
agent (D). Finally, two Defectors may interact.

Thus, the reaction network that models the interaction between a population of Tit
for Tat agents and a population of Defectors in the non-recognizability case is given
by

〈{D, G D, TC , TD, GT , LT }, {R1, R′
2, R′′

2 , R′
3, R′′

3 }〉.

4.2.2 Dynamic analysis

In this case there is no assumption on the preference of certain interactions over others,
and thus the three reactions rates will have the same constant value k = k1 = k2 = k3.
Applying mass action kinetics we obtain the following chemical reaction system:

Ḋ = 0,

ṪC = −2kTC D,

ṪD = 2kTC D,

ĠT = 2kb
(
T 2

C + TC TD
)
,

Ġ D = 2kbTC D,

L̇T = 2kc
(
T 2

C + TC TD + TC D
)
.

(11)

The chemical reaction system (11) is simple enough to be solved analytically.
However, before showing the solution of (11) we will show that a simple analysis
of the topology of the network permits us to identify certain qualitative properties of
the system. We say that a species m is consumed (produced) within R if and only
if there exists a reaction R ∈ R such that the multiplicity of m as reactant in R is
higher (smaller) than the multiplicity of m as product. Based on this, we say that a set
of species S ⊆ M is semi-self-maintaining if and only if every species m ∈ S that
is consumed within R is also produced within R. Semi-self-maintenance has been
proven to be a necessary notion for the stability of a reaction network (Dittrich and
Speroni di Fenizio 2008). In our example, note that the decision TC is consumed by
reaction R3 but it is not produced by none of the reactions. Thus, TC cannot belong
to a semi-self-maintaining set. Hence, TC (t) → 0 as t → ∞. As a consequence, we
are able to deduce that in the long term only TD and D will remain with concentration
higher than zero (see Fig. 3). In addition, the interaction between these two species
does not generate any payoff. Hence, we can conclude that the total accumulated profit
of both strategies in this case is finite.1

Solving the chemical reaction system we have that the ratio Pr between the profit
PT

TC (0)
of the Tit for Tat strategy and the profit PD

D(0)
of the Defector strategy is given by:

1 Technically the profit of both strategies is an asymptotic decreasing function, and the total profit calculated
as its integral between zero an infinity could be unbounded. However, the solution of the profit for both
strategies can be bounded by a decreasing exponential function, leading to a finite total profit.
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Fig. 3 Chemical reaction network (left) and the qualitative evolution of its set of decisions (right) for the
systems modelled in Sects. 4.2, 4.3 and 4.4 (cases a, b and c respectively). For the sake of simplicity, the
payoff species and some arrows are omitted in the left diagrams, and the trivially stable sets of decisions
are omitted in the right diagrams. The only system that allows a steady state having the three decision
species is c

Pr = 1 − c

b

(
D(0)

TC (0)
+ 1

)

Therefore, Pr > 1 has not a solution, and hence the Defector strategy collects more
profit than Tit for Tat strategy.

4.3 Simulating agent’s memory

4.3.1 Building the reaction network

In the classic EGT situation where agents have memory, it is expected that each
Tit for Tat agent cooperates only once with every Defector agent, and that Tit for
Tat agents always cooperate between themselves. Moreover, a Tit for Tat agent
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(with memory) will cooperate in its first interaction with every Defector agent and
it will defect afterwards. This implies that, after a while, this Tit for Tat agent will
have cooperated with all the Defectors in the system, and thus will not cooperate any-
more with any of the Defectors. In order to model this system in our setup, we assume
that from a long term analysis perspective, the fact that a Tit for tat agent that defects
with the Defectors that has already encountered is equivalent to this agent cooperating
with all the Defectors a number of times equals to the total number of Defectors in the
system, and defecting with all of them afterwards. Hence, we assume in this section
that TD corresponds to the decision of a Tit for Tat agent that has interacted with all the
Defectors (and thus will always defect with the Defectors), and TC corresponds to the
decision of a Tit for Tat agent that has cooperated with some but not all the Defectors,
so it still needs to identify some of them (and thus can still cooperate with them).

The cooperation among Tit for Tat agents is modeled using the following reactions:

R1 = TC + TC → TC + TC + 2bGT + 2cLT ,

R4 = TD + TD → TD + TD + 2bGT + 2cLT ,

R′
5 =TD +TC →TD +TC +2bGT +2cLT , R′′

5 =TC +TD →TC +TD +2bGT +2cLT

(12)

In these reactions, the two Tit for Tat decisions always lead to a cooperative payoff.
Note that the reaction R1 defined in this section is syntactically equivalent to the
reaction R1 of Sect. 4.2. However, the decision species of the Tit for Tat strategy
(TD and TC ) of Sect. 4.2 and of this section assume different features. Concretely,
in Sect. 4.2 the decision species refer to pure decisions without any recognition or
memory capacity, while in this the decisions represent a potentiality to cooperate or
defect under the condition of having interacted with all the Defectors or not. In the
remaining of the paper we will avoid renaming the reactions that are syntactically
equivalent to reactions of previous sections.

We model the interaction between Tit for Tat and Defector agents with the following
reactions:

R′
2 =TC +D →TD +D+cLT +bG D, R′′

2 = D+TC → D+TD +cLT +bG D

R′
6 =TC +D →TC +D+cLT +bG D, R′′

6 = D+TC → D+TC +cLT +bG D
(13)

Reactions R′
2, R′′

2 in this case correspond to the situation where the Tit for Tat agent
interacts for the last time with the Defectors in the system. Hence, after that last reac-
tion, the cooperative Tit for Tat becomes a defector Tit for Tat that will not cooperate
again with the Defectors in the system. Reactions R′

6 and R′′
6 correspond to the situa-

tion when there are still some Defectors that the Tit for Tat agent has not encountered,
and hence it cooperates, and stays as a cooperative decision for the next interaction. It
is important to note that we can control the occurrence of these reactions with the rate
constants because reactions R′

6 and R′′
6 represent an interaction that does not depend

on the number of Defectors in the system (and occurs at the same frequency than
R1, R4 and R′

5), but R′
2 and R′′

2 does depend on the number of Defectors, and hence
occur at a different frequency with respect to the other reactions (much less frequent
in this case).
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To state this difference we need to set the reaction rates according to the time-scale
that each reaction represents. First, note that R1, R4, R′

5, R′′
5 , R′

6 and R′′
6 represent

agent-agent interactions, and we will not assume preference of any of them over the
others. Thus we set k1 = k4 = k′

5 = k′′
5 = k′

6 = k′′
6 = k. Secondly, reactions R′

2
and R′′

2 represent the last interaction of the Tit for Tat agent with the defectors of the
system. Hence, we set these reaction rates by k′

2 = k′′
2 = 1

τ
k, where τ is the expected

time that a Tit for Tat agent takes to interact with all the Defectors in the system (the
calculation of τ is included as an ESM appendix). Thus the reaction network that
models this system is

〈{TC , TD, D, GT , LT , G D}, {R1, R′
2, R′′

2 , R4, R′
5, R′′

5 , R′
6, R′′

6 }〉, (14)

and the chemical reaction system that corresponds to this system is

Ḋ = 0,

ṪC = − k
τ

TC D,

ṪD = k
τ

TC D,

ĠT = 2kb
(
T 2

C + 2TC TD + T 2
D

) = 2kbTC (0)2,

Ġ D = 2kbTC D
(
1 + 1

τ

)
,

L̇T = 2kc
(
T 2

C + 2TC TD + T 2
D + TC D(1 + 1

τ
)
) = 2kc

(
TC (0)2 + TC D(1 + 1

τ
)
)
.

(15)

4.3.2 Dynamical analysis

In this case, the set {TC , TD, D} is not a semi-self-maintaining set (see Sect. 4.2).
Hence, as with the non-recognizability case, we have that TC (t) → 0 as t → ∞
(see Fig. 3). However, in this case TD decisions may cooperate with other Tit for Tat
decisions. Thus in the asymptotic regime, PD is constant and PT is an increasing
function. Therefore, Tit for Tat strategy collects more profit than the Defector strategy
in the long term.

This case is also simple enough to be solved analytically. Solving (15) we have that
the profit ratio is given by

Pr (t) = α
t

1 − e−γ t
− β (16)

where α = D(0)
(b−c)k
b(1+τ)

, β = cD(0)
bTC (0)

and γ = D(0)k
τ

. Note that t
1−e−γ t is an increasing

function when γ > 0. Hence, two cases are possible for this system: The first case
is that the Tit for tat strategy is more profitable for all t ≥ 0. The second case is
that Defector strategy has a bonanza period (while Tit for tat agents learn who are
the Defectors in the system), and after the bonanza period Tit for tat becomes more
profitable. Applying L’Hopital rule to Eq. (16) we have that Pr (0) = α

γ
− β. Hence,

Pr (0) > 1 is equivalent to

(b − c)

b

τ

(1 + τ)
> 1 + cD(0)

bTC (0)
(17)
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Fig. 4 Payoff ratio showing the bonanza period of Defectors. The x-axis corresponds to the time t , the
y-axis to payoff ratio Pr (t). We set c = D(0) = TC (0) = τ = k = 1. The short dashing curve corresponds
to Pr (t) when b = 2 and the large dashing curve to b = 3. The solid horizontal line equals to 1 is a
reference to identify the bonanza period (for the values of t where Pr (t) < 1 Defectors collect more profit
than Tit for tat agents). The bonanza period is approximately equal to 6 for b = 2 and to 4 for b = 3

From Eq. (17) we see that Defector strategy is more profitable than Tit for tat at
t = 0 for any reasonable (positive) setting of the parameters. We can then estimate the
bonanza period for Defectors from Eq. (16). We will not perform such analysis here,
but point out that it can be developed by (algebraically or numerically) approximating
the value of t that satisfies the transcendent equation (16) (see Fig. 4 for examples).

In this section we make use of a global property to define the reaction network.
This global property refers to the long term capacity of Tit for tat agents to recognize
the population of Defectors, i.e. Tit for tat agents recognize the other’s strategy in
the long term. Note that this global property is dependent on the assumption that the
populations of agents in the system do not change in time (no mutation, no replication).
While this assumption, and the use of a global property to define the reaction network,
may be suspicious from an EGT perspective, the intention of this section is to illustrate
that it is possible to consider different kinds of reactions to model an agent scenario.
In particular, reactions may refer to different time-scales, which is reflected in the
frequency at which they occur, and the frequencies of each reaction can be adjusted
from statistical information of the system.

4.4 Strategy recognition

4.4.1 Building the reaction network

In this case, we will assume that agents do not have memory. However, agents can
recognize other agent’s strategy, i.e. agents may (or may not) recognize the strategy
population to which the other agent belongs when they interact. The decision species
in this case represent the decision when there is no recognition of the other’s strategy,
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i.e. a predisposition to cooperate or defect. However, if recognition occurs it may be
the case that this predisposition is altered by the recognition, and hence a cooperative
decision interacts as a defector decision and vice versa. Hence, the effect of the recog-
nition may change the predisposition to cooperate or defect. This will be represented
in the reactions we define. First, note that Defector agents will always defect, thus
the recognition situations that we consider will not affect them in this analysis. Tit
for Tat agents however, might change their decision after recognizing its opponent
strategy. The products of each interaction will vary according to the decisions that
are interacting, and whether or not the recognition occurs. To clarify this point let
us consider the following case: two Tit for Tat defector decisions are interacting (the
reactants of such reaction are TD + TD). When both agents do not recognize each
other the products of this reaction correspond to the payoff of two defector decisions
interacting (zero stoichiometry reaction). If only one agent recognizes that the other
is a Tit for Tat, the products of the reaction will correspond to a defector–cooperator
payoff. Finally if both agents recognize each other, the products will correspond to a
cooperator–cooperator interaction. Thus the following reactions must be included in
the system

R∗
4 = TD + TD → TC + TD + cLT + bGT ,

R4 = TD + TD → TC + TC + 2cLT + 2bGT .
(18)

Note that in both reactions, according to the number of agents that recognizes other’s
strategy (one in R∗

4 and two in R4), one or two defector Tit for Tat decisions switch to
a cooperative one because Tit for Tat strategy imitates the last opponent’s play.

Furthermore, it can be the case that a defector Tit for Tat recognizes a cooperative
Tit for Tat agent. This is modeled by

R∗
5 =TC +TD →TC +TC +2cLT +2bGT , R∗∗

5 =TD +TC →TC +TC +2cLT +2bGT

(19)

Finally we need to consider the interaction between a cooperative Tit for Tat and a
Defector. If the Tit for Tat recognizes the Defector it will defect, so we have:

R∗
2 = TC + D → TD + D, R∗∗

2 = D + TC → D + TD (20)

If the cooperative Tit for Tat agent does not recognize the Defector we have

R′
2 =TC +D →TD +D+cLT +bG D, R′′

2 = D+TC → D+TD +cLT +bG D

(21)

It is important to note that we do not consider the interaction where a defector Tit for
Tat cooperates with a Defector agent because such case cannot be explained through
the success or fail of a recognition process (but through a confusion process that we
are not considering). If the defector Tit for Tat agent recognizes the defector, it will
defect, and if it does not recognize it, it will defect as well. Thus, the reaction network
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which models this situation is

〈{TC , TD, D, G E , GT , LT }, {R1, R′
2, R′′

2 , R∗
2 , R∗∗

2 , R4, R∗
4 , R∗

5 , R∗∗
5 }〉. (22)

4.4.2 Dynamical analysis

Let p be the probability that an agent recognizes other agent’s strategy. We will modify
the reaction rates according to the recognizability situation that occurs on each reaction,
by multiplying the reaction rate k to the probability of occurrence of the reaction event.
Note that in reaction R1 both agents would cooperate, even if they do not recognize
each other, thus k1 = k. In R∗

4 only one of the defector Tit for Tat agents recognizes
the other thus k∗

4 = p(1− p)k. In R4, the two defector Tit for Tat recognize each other
thus k4 = p2k. In R∗

5 , R∗∗
5 , the defector Tit for tat agent recognizes the cooperator Tit

for tat thus k∗
5 = k∗∗

5 = pk. Analogously k′
2 = k′′

2 = (1 − p)k and k∗
2 = k∗∗

2 = pk.
In this case the chemical reaction system is:

Ḋ = 0,

ṪC = k
(

p(1 + p)T 2
D + 2pTC TD − 2TC D

)
,

ṪD = −ṪC ,

ĠT = kb
(
2T 2

C + p(1 + p)T 2
D + 2pTDTC + 2TC TD

)
,

Ġ D = 2kb(1 − p)TC D,

L̇T = c
b ĠT + 2kc(1 − p)TC D.

(23)

Note that by setting p = 0 we recover the case of non-recognizability shown in
Sect. 4.2. By varying p from zero to one we can model different situations of recog-
nition, and when p = 1, we have G D ≡ 0. This means that Tit for Tat agents would
never cooperate to Defectors (as expected because there is full recognition of other
agent’s strategy).

Considering that TC (t) + TD(t) = TC (0), we can obtain for both TC and TD a first
order quadratic equation from (23). When the parameters k, b, c, p are set as specific
values it is possible to find an analytic expression for the solution of the chemical
reaction system (23). However, the solution of (23) considering general values for the
parameters k, b, c, p is extremely complicated because different values on the para-
meters lead to qualitatively different solutions. Therefore, instead of determining the
regions that lead to different solutions, then solving the equations in each parameter
region, and finally looking at the relative profit relation as we did in the other cases,
we will focus our analysis on conditions under which is possible to reach a steady
state where all the decision species have concentration greater than zero, and study
the payoff of the strategies under the steady condition. Differently to the two cases
revised above, in this case TC is produced by reactions R4, R∗

4 , R∗
5 and R∗∗

5 . Thus
{TC , TD, D} is a semi-self-maintaining set. For semi-self-maintaining sets, it is pos-
sible to verify whether they can reach a steady state by studying the stoichiometric
matrix of the reaction network. Several methods such as flux balance analysis, elemen-
tary modes, among others have been developed for this purpose (Schilling and Palsson
1998; Schuster et al. 1999; Österlund et al. 2011). We will approach the steady state
analysis of this system from a novel approach called Chemical Organization Theory
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(Dittrich and Speroni di Fenizio 2008) because it provides tools to connect a reaction
network with the fixed points (and other higher-dimensional attractors) of its chemical
reaction system (Dittrich and Speroni di Fenizio 2008; Peter and Dittrich 2011).

Definition 2 Let O ⊆ M and RO the set of reactions whose reactants are in O , i.e.
the set of reactions that are firable within the species available in O . We say O is a
chemical organization if and only if it holds the following properties:

– Closure: Species produced within RO are contained in O .
– Self-maintenance: There exist a flux vector v ∈ R

|RO |
>0 such that SOv ≥ 0, where

R>0 is the set of strictly positive real numbers, |RO | is the cardinality of RO , and
SO is the stoichiometric matrix associated to the reaction network 〈O,RO 〉.

Organizations are sets of species which do not produce novel species within their
reactions (closed), and are able to sustain or increase the concentration of its species
by a reaction process where each reaction occurs at a positive rate (self- maintaining).
Although the notions of organization and elementary mode (Schuster et al. 1999) are
similar in that both comprise a condition that relates the flux vector to the steady states
of the chemical reaction system (Kaleta et al. 2006), organization entails a concept of
independent sustainability within a reaction network because of the closure condition.
Indeed, the set of species with concentration higher than zero of any fixed point of a
chemical reaction system is an organization of the underlying reaction network (see
theorem 42 in (Dittrich and Speroni di Fenizio 2008)). We will analyze whether or
not Tit for Tat and Defector strategies can be part of the same steady state, and in this
sense if they can coexist. To do so we verify the conditions under which both strategies
together form an organization. Note that in the cases studied in Sects. 4.2 and 4.3 we
found that TC (t) → 0 as t → ∞, and hence both strategies were not able to coexist
in the long term.

We first need to point out that from X = {TC , TD, D} we can obtain the rest of the
(payoff) species by applying the reactions, i.e. the closure of X is M . Moreover, the
species representing payoff are produced but not consumed by the set of reactions.
Hence, if X is a self-maintaining set, then M is a self-maintaining set, and thus an
organization. Therefore, M would be a candidate to represent a fixed point of the
chemical reaction system.

To prove the self-maintenance of X we need to verify if there exists a flux vector that
produces species in an equal or higher quantity than its consumption. As the reactions
which vary the number of species in X are R4, R∗

4 , R∗
5 , R∗∗

5 , R∗
2 , R∗∗

2 , R′
2, R′′

2 , we can
verify the self-maintaining condition reducing the stoichiometric matrix to only these
reactions. The system of equations is given by:

⎛

⎝
2 1 1 1 −1 −1 −1 −1
−2 −1 −1 −1 1 −1 −1 −1
0 0 0 0 0 0 0 0

⎞

⎠ vsm = f ≥
⎛

⎝
0
0
0

⎞

⎠ (24)

Solving this equation we have that there exist a solution only for the case f = 0,
and such case is fulfilled by the flux vector vsm = (v4, v∗

4, v∗
5, v∗∗

5 , v∗
2, v∗∗

2 , v′
2, v′′

2)

satisfying the following relation
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2v4 + v∗
4 + v∗

5 + v∗∗
5 = v∗

2 + v∗∗
2 + v′

2 + v′′
2 (25)

We have found a relation among the fluxes that correspond to a steady production
regime (fixed point) for all the decision species in the system. Note that we can rewrite
Eq. (25) replacing vi by the expression defined in (1), which assumes that our system is
dynamically governed by the law of mass action kinetics, i.e. we can link the stoichio-
metric condition given by (25) with the corresponding chemical reaction system (Peter
et al. 2010). In this case, the fluxes of vsm can be obtained applying (1) to the reac-
tions R4, R∗

4 , R∗
5 , R∗∗

5 , R∗
2 , R∗∗

2 , R′
2 and R′′

2 respectively. If we do such replacement,
Eq. (25) becomes in the following equation

kp(1 + p)T 2
D + 2kpTC TD = 2kTC D. (26)

Thus, recalling that D(t) = D(0) and that TC (t) + TD(t) = TC (0) for all t , we have
that a stable concentration for species TD = T ∗

D is given by

T ∗
D = pTC (0) + D(0)

p(1 − p)
∓

√
pTC (0) + D(0)2 + 2p(1 − p)TC (0)D(0)

p(1 − p)
, (27)

Hence, we have obtained a condition for steady concentrations of each decision species.
Note that the steady concentration does not depend on k, and that by analyzing the
squared root of (27) under the condition T ∗

D > 0 we can determine whether there is
zero, one or two steady concentrations.

We now assume the steady state condition (26), and study which strategy is more
profitable. To do so, we need to inspect the production of the molecules GT , LT , G D

for the flux vectors that verify the self-maintenance of M . As we already know that the
production of species TC , TD and D is zero, we are only concerned with the production
of the species GT , LT , G D , i.e we construct the stoichiometric matrix corresponding
to reactions {R1, R′

2, R′′
2 , R4, R∗

4 , R∗
5 , R∗∗

5 } and compute the production of the payoff
species under the steady decision production.

⎛

⎝
2b 0 0 2b b 2b 2b
2c c c 2c c 2c 2c
0 b b 0 0 0 0

⎞

⎠ vP =
⎛

⎝
f4
f5
f6

⎞

⎠ (28)

where vP = (v1, v′
2, v′′

2, v4, v∗
4, v∗

5, v∗∗
5 ). Note that we have that PT = f4−f5

TC (0)
and

PD = f6
D(0)

. Hence Pr is defined by

Pr =
(

D(0)

TC (0)

) (
b − c

c

)(
2v1 + 2v4 + v∗

4 + 2v∗
5 + v∗∗

5

v′
2 + v′′

2

)

. (29)

From here, applying the condition (25) and replacing the elements of vP by their
kinetic expressions defined in (1), we obtain that Pr ≥ 1 if and only if

1 + 2k
(
T ∗

C + pT ∗
D + pD(0)

)
>

2k(1 − p)c

b − c
TC (0) (30)
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where T ∗
D is obtained from (27) and T ∗

C = TC (0)−T ∗
D . Thus we have found an algebraic

expression that indicates the conditions under which strategy is more profitable in the
steady decision production case.

5 Discussion

After introducing the reaction network framework, we developed the socio-chemical
metaphor in a classical EGT scenario. We discussed how to model evolutionary games
using reaction networks. Remarkably, the units of modelling are the agents’ decisions
and the payoffs obtained by the interaction of such decisions, instead of the agents
themselves. This framework is fundamentally different to standard agent-based mod-
els used in EGT because we neglect the role of agents and study the system at the
decision level. We model the evolution of the concentration of the species that represent
decisions and payoffs of the strategies in the system. The consequences of memory,
strategy recognition and other properties of agents are replaced by specific rules of
interaction. This is based on the idea that in social systems visible communications
are the key properties when population dynamics and long term changes are studied
(Luhmann 1986). The concentration of a decision species is interpreted as its visibility,
and the concentration of the payoff species is interpreted as the strategy performance
within the system (see Fig. 1). As a first illustrative case, we studied the repeated
prisoner’s dilemma.

We were able to reproduce the results known from the literature concerning this
problem, and we also provided an invasion analysis that explains why the emergence
of cooperation is paradoxical from a payoff-based fitness standpoint (see Fig. 2). We
then studied a system consisting of a group of Tit for Tat agents interacting with a
group of Defectors in three situations where agents have different capacities to recog-
nize and remember other agents. In each case, the reaction network is built from the
information given by the payoff matrix together with the concrete assumptions on the
agents’ recognizability and memory capabilities. These capabilities play an important
role in determining the meaning of the decision species, the possible reactions, and
the kinetic rates of these reactions. For example, in Sect. 4.2 the species TD repre-
sents a defector decision of a Tit for Tat agent and R2 represents an (agent-agent)
interaction between a Tit for Tat agent and a Defector, where both agents have neither
memory nor recognizability capacity. However, in Sect. 4.3 the species TD represents
the decision of a Tit for Tat agent that can remember a group of Defectors, and R2
represents that a Tit for Tat agent has interacted with all the Defectors in the system.
In particular, we developed a reaction network model for the interaction of Tit for Tat
and Defector agents when there is non recognizability (Sect. 4.2), when agents have
memory capacity (Sect. 4.3), and when agents have a probability to recognize other
agents’ strategy (Sect. 4.4).

Moreover, we built a chemical reaction system (ODE system) from each reaction
network to study its dynamics (see Eq. 2). We were able to solve the chemical reaction
system in the non recognizability and memory situations. Hence, we found analytical
conditions for the performance of each strategy in such cases. From these performance
conditions it is possible to infer if a strategy may invade the other by properly setting the
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Table 2 Table showing the meaning attributed to the decision species and the usage of the kinetic constant
to model the frequency of the reactions on the three cases studied in Sect. 4

Situation Decision species’ meaning in the reactions Use of kinetic constant

Non-recognition Pure decision None

Memory Decision having (or not)
interacted with all the Defectors

Expected time to
identify all the Defectors

Strategy recognition Decision having (or not)
recognized other’s agent strategy

Recognition frequency

initial concentration values, and observe the influence of group selection by setting the
reaction rates. Moreover, a simple topological analysis of the network (see the semi-
self-maintenance condition defined in Sect. 4.2) makes possible to study asymptotic
properties of the system. In the strategy recognition case (Sect. 4.4), the analytical
solution of its chemical reaction system is extremely complicated. Instead of solving
the chemical reaction system or applying numerical methods, we applied a novel
method called Chemical Organization Theory (Dittrich and Speroni di Fenizio 2008)
to study its dynamical properties. We found a steady state condition for the Tit for Tat
and Defector groups combining stoichiometric and kinetic information of the reaction
network (see Eq. 27), and we obtained an analytical expression for the performance
ratio between the two strategies under the steady state condition (see Eq. 30).

We suggest that this approach may be promising for the modelling of complex EGT
scenarios. Here we focus on the capacity of this framework to show the possible kinds
of interactions that may exist depending on what strategies are present and the cognitive
capacities of the agents (see Table 2). However, a more elaborated dynamical analysis
and a methodology to generate models in complex situations are required. Concerning
the dynamical analysis, we propose three key elements for such development. First, we
expect to extend the model to situations where strategies change in relative proportion
by including reactions that generate and destroy decisions. This would provide a
dynamical (evolutive) process for the decisions and strategies, as it is usually modeled
by the replicator equation in EGT. Secondly, it is necessary to investigate if the mass-
action kinetics is the right dynamical law to build the differential equations that govern
the evolution of the system. In the examples we have discussed it seems to be a
reasonable assumption. However, network and other effects often occur in realistic
human interactions (Nowak 2006a; Nowak and May 1992; Lieberman et al. 2005).
These effects change the space homogeneity assumption underlying the mass-action
law. Once these two issues are addressed, it is necessary to clarify which methods
are applicable to the equations we would obtain in order to study their stability. We
claim that COT is an interesting tool because provides a basic landscape of the steady
states in the system. However, it does not provide concrete results concerning stability.
Therefore, dynamical systems’ methods need to be investigated in conjunction with
recent extensions of COT (Strogatz 2000; Peter et al. 2010). Moreover, we propose
to apply other methods that have been developed to study mechanisms for stability of
reaction networks such as elementary modes (Schuster et al. 1999) and Petri net based
analysis (Heiner et al. 2008), to analyze the invasion of strategies on these complex
scenarios, and study whether or not different strategies are ESS, a crucial concept in
EGT (Weibull 1995).
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Concerning the modeling of more complex situations, it is necessary to develop a
methodology that specifies the kinds of interactions and the kinds of meaning associ-
ated with the decision species given the specification of the agents’ cognitive abilities
and the strategies that are present in the system. We have illustrated how to model
memory and strategy recognizability in a simple agent setting. However, in a more
complex situation these abilities may not be modeled in the same way as we did here.
Note that in this work the decision species refer to a strategy, and thus a strategy is
defined as a set of decisions. In a more realistic setting, strategies are not predefined
but emerge from the interactions. Our approach allows the specification of a set of
interactions without attributing a specific strategy to each decision. Hence, we can
use network analysis techniques such as elementary modes or COT to identify the
decision pathways (analogous to metabolic pathways) that tend to self reproduce.
This would indicate the emergence of higher order structures of decisions that can
represent strategies or other behavioural tendences.

We believe that the reaction network framework applied to EGT might be an impor-
tant step towards a formal theory which explains the formation, interaction and evo-
lution of societies.
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