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Abstract: Reaction Networks have been recently proposed as a framework for systems modeling due
to its capability to describe many entities interacting in contextual ways and leading to the emergence
of meta-structures. Since systems can be subjected to structural changes that not only alter their
inner functioning, but also their underlying ontological features, a crucial issue is how to address
these structural changes within a formal representational framework. When modeling systems using
reaction networks, we find that three fundamentally different types of structural change are possible.
The first corresponds to the usual notion of perturbation in dynamical systems, i.e., change in system’s
state. The second corresponds to behavioral changes, i.e., changes not in the state of the system
but on the properties of its behavioral rules. The third corresponds to radical structural changes,
i.e., changes in the state-set structure and/or in reaction-set structure. In this article, we describe
in detail the three types of structural changes that can occur in a reaction network, and how these
changes relate to changes in the systems observable within this reaction network. In particular, we
develop a decomposition theorem to partition a reaction network as a collection of dynamically
independent modules, and show how such decomposition allows for precisely identifying the parts
of the reaction network that are affected by a structural change.

Keywords: reaction networks; chemical organization theory; system theory; emergence;
structural change

1. Introduction

The dynamics of a system, either modeled with a reaction network or any other representational
language (such as agent-based models, rule-based modeling, or systems of equations; for an overview,
see [1]) is generally examined by combining analytic and computational tools, in the so-called paradigm
of dynamical systems [2]. The dynamical systems approach aims at explaining the time evolution of a
system and how such evolution can be influenced by small but sudden changes in the system’s state,
known as perturbations. The theory of dynamical systems has produced various notions that describe
non-trivial aspects of a dynamical system (e.g., attractor), and has produced powerful mathematical
results to explain the evolution of a system after a perturbation (e.g., Lyapunov exponent), or subjected
to frequent perturbations in time [3].

However, since perturbations are conceived to occur within the state space (phase space) of
the system, external influences that qualitatively modify the state space of a system can hardly be
represented in this paradigm. In fact, little is known about how to represent external influences that
lead to structural transformations of the state space. The concept of qualitative change is a fundamental
notion for system theory and is at the core of important notions developed by system theorists such
as structural coupling [4] and change of code [5]. Therefore, a formal notion of qualitative changes
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is crucial for improving our understanding of what constitutes the identity of a system, as well as
for developing notions that might go beyond the traditional notion of perturbation such as resilience,
robustness, and adaptivity.

In [6], we have proposed using reaction networks (RN) as a language for modeling systems.
In particular, we showed that, by using Chemical Organization Theory (COT), we can compute
the set of possible observable systems from a reaction network universe. In COT, the notion of
organization is introduced in order to identify structurally closed and self-maintaining subnetworks of
the reaction network. The set of organizations of a reaction network can be proven to contain all of
the stationary regimes of the dynamics of the reaction network [7,8]. In the present article, we will
extend the formalism of COT and propose it as a framework for representing the qualitative changes
mentioned above.

Although most theoretical research in COT has been focused on the stoichiometric level of
representation (with the exception of a few attempts such as [8,9]), which lacks dynamical equations
for time-evolution, and thus is insufficient for the dynamical systems paradigm, COT is suited to model
qualitative changes by simply modifying the way in which species are transformed in the reaction
network universe. In particular, we identify two types of changes that go beyond the dynamical
system’s notion of perturbation. The first is the modification of the way in which reactions occur in the
network, and the second is the addition and/or elimination of species and reactions in the reaction
network. These changes will be called process-structure perturbation and topological-structure perturbation.

Since a change in the reaction network universe leads to changes in the set of organizations of the
reaction network, we have that a qualitative change in the reaction network shapes a new landscape of
observable systems. However, we will show that a deeper analysis in the organization’s structure and
in their self-maintaining processes allows for precisely identifying the influence of qualitative changes
in a system.

In Section 2, we recall the basics of the reaction network formalism and COT. In Section 3, we
introduce the notions of process-structure and topology-structure perturbation using the language
of reaction networks. In Section 4, we elaborate a decomposition Theorem that, later in Section 5,
is applied to formalize the structural perturbations and precisely identify their impact in the reaction
network. In Section 6, we present an example to illustrate the Definitions and results of this work, and,
finally, in Section 7, we present some general conclusions.

2. COT Summary

In COT, we consider three increasingly complex ways to represent a reaction network. In the
first, so-called relational description, reactions include information about which species are consumed
and produced, but no quantitative information about the production and consumption of reactions is
given. In the second, so-called stoichiometric description, quantitative information about the number of
species consumed and produced by each reaction is included. In the third, so-called kinetic level of
description, quantitative information about the number or concentration of species as well as rules for
the ways in which reactions occur are included. The core ideas of this work lie at the stoichiometric
level of representation. For a comprehensive introduction to COT, we refer to [6,7].

LetM = {s1, . . . , sm} be a finite set of m species reacting with each other according to a finite set
R = {r1, . . . , rn} of n reactions. Together, the set of species and the set of reactions is called the reaction
network (M,R). A reaction ri is represented by

ri = ai1s1 + ...aimsm → bi1s1 + ...bimsm, (1)

with aij, bij ∈ N0, for i = 1, ..., n.
Reactions describe what collections of species transform into what new collections. For a given

reaction ri ∈ R, the species sj to be transformed, i.e., such that aij > 0, are called reactants of r, and the
species to be created, such that bij > 0, are called products.
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In COT, we study subsets of species X ⊆M. Note that, for all X, there is a unique maximal set of
reactionsRX ⊆ R defined as the set of all reactions whose reactants are in X. Thus, each set X induces
a sub-network (X,RX).

Definition 1. X is structurally closed iff the products of every reaction inRX are in X [6].

A structurally closed set X entail a sub-network of the reaction network whose reactions do not
produce species outside X.

Definition 2. Two species sj, sk ∈ X are directly-connected in X if and only if there exist a reaction ri ∈ RX
such that both species are active in the reaction, i.e., sj and sk are either reactants or products of ri. We say sj and
sk are connected in X if and only if there exists a sequence of species s0, ..., sp ∈ X such that s0 = sj, sp = sk
and for all l = 0, ..., p− 1, we have that sl and sl+1 are directly-connected in X.

Connected species in X can be seen as potentially co-dependent species in the reaction network
because the consumption of one of them might affect the production of all the species connected
to it. In general, X can be decomposed into connected modules whose reactions are independent.
Identifying independent behavioral modules of a reaction network is useful from both computational
and mathematical perspectives because it provides resources for an algorithmic divide-and-conquer
strategy, and also can deepen the understanding of the structure of the reaction network.

The dynamics of the reaction network is determined by how often reactions occur. A particular
specification of the occurrence of reactions within the reaction network is called reaction process, or
simply process, and we denoted it by v. In reaction network modeling, v is usually called flux vector. We
are introducing a slightly more general notion because our aim lies beyond the modeling of biochemical
systems. Thus, a process corresponds to a non-negative vector v = (v[1], ..., v[n]), whose components
are natural or real numbers for representing discrete and continuous dynamics, respectively. We say a
process v can be applied to X if all the reactions in the process can be triggered by the species in the set
X. Hence, v can be applied to X only if v[i] > 0 implies ri ∈ RX , for i = 1, ..., n.

Definition 3. Let R∗ ⊆ RX and Π(R∗) be a set of processes such that v ∈ Π(R∗) implies v[i] > 0 for
ri ∈ R∗, and v[i] = 0. Otherwise, i = 1, ..., n.

Lemma 1. A process v can be applied to X if and only if there existR∗ ⊆ RX such that v ∈ R∗.

Corollary 1. X ⊂ X′ impliesRX ⊆ RX′ , which, in turn, implies that Π(RX) ⊆ Π(RX′).

In order to represent how species are globally transformed in the reaction network by the
application of a process, let us represent the state of a reaction network by a vector x of non-negative
coordinates such that x[j] corresponds to the number (or concentration) of species of type sj in the
reaction network, j = 1, ..., m. In addition, note that the numbers aij and bij in Equation (1) can be used
to encode the way in which species are consumed and produced by the reactions. Namely, we can
build a stoichiometric matrix S ∈ Nm×n

0≥ such that S[j, i] = bij − aij.
From here, we can compute the state xv of the reaction network associated to a state x and

a process v by the following equation:
xv = x + Sv. (2)

For simplicity, we have implicitly assumed that the coordinates of x are sufficiently large to
consume the species required by the reactions in v in any order. For a study of order effects in reaction
networks we refer to [10].
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Definition 4. X is semi-self-maintaining with respect to a set of reactions R∗ if for each reactant s ∈ X of
a reaction r ∈ R∗, there is a reaction r̄ ∈ R∗ such that s is a product of r̄. We say X is semi-self-maintaining if
and only if X is semi-self-maintaining with respect toRX .

A set of species that is semi-self-maintaining can recreate the species consumed by its associated
set of reactions. However, such recreation might not be quantitatively balanced. For quantitatively
balanced processes of recreations, we introduce self-maintaining sets.

Definition 5. X is weak-self-maintaining with respect toR∗ if there exists v ∈ Π(R∗) such that xv[j] ≥ x[j],
j = 1, ..., m. We say X is self-maintaining if and only if X is weak-self-maintaining with respect toRX .

A set of species that is self-maintaining has processes such that all the reactions of a reaction
network into consideration have a positive rate and, when applied, all species of the set are
quantitatively recreated.

Definition 6. Let X ⊆M, X be an organization if and only if X is structurally closed and self-maintaining.

Remarkably, all stable dynamical regimes of a reaction network correspond to organizations [7,8].
This fact was used to propose the reaction network formalism as a language for modeling systems,
by noting that the set of organizations of a reaction network corresponds to the observable systems in
the reaction network universe [6].

From now on, we will assume that X is structurally closed and connected (both properties can
be verified at low computational cost). Note that, since the species in X are connected, for all species
sj ∈ X, there is at least one reaction ri ∈ RX such that either aij > 0 or bij > 0.

Definition 7. A species sj ∈ X is a catalyst w.r.t X if and only if ri ∈ RX implies aij = bij, for i = 1, ..., n.
The maximal set of catalysts w.r.t X will be denoted by E.

Definition 8. Let x be any initial state, R∗ ⊆ RX, and v ∈ Π(R∗) be a non-null process vector such that
xv in Equation (2) is a non-negative vector. If xv[j] > x[j], we say that sj is an overproduced species by v in
X, or simply that s is overproducible in X. Furthermore, if all the species of a set G ⊆ X are simultaneously
overproduced by a process vector vG, we say that G is overproduced by vG in X, or that G is overproducible
in X.

Lemma 2. Let s be overproducible in X. Then, s is overproducible in every X′ ⊃ X.

Proof. Direct consequence of Corollary 1.

Lemma 3. The maximal set of overproducible species F in X is unique.

Proof. Since for every species s ∈ X we have that s is either overproducible or not overproducible,
we can build the set {sj1 , ..., sjk} = G of all the overproducible species in X, and the set of processes
{v1, ..., vk} that overproduces the species in G. Note that each vi ∈ Π(R∗i ), with R∗i ⊆ RX. Thus,
the process vF = v1 + ... + vk ∈ Π(R∗), with R∗ = ∪k

l=1R
∗
l , overproduces all the species in G

simultaneously. SinceR∗ ⊆ RX , we conclude G = F.

Species in F can be unlimitedly overproduced by the repeated application of the process vF.
Hence, for any process v, we can create a new process v + αvF, with sufficiently large α, such that
species in F (and thus in E ∪ F) are ensured to have non-negative production.

Definition 9. Let v be a process. We define v(F) = v + αvF by choosing sufficiently large α so that all species
in F are overproduced by v(F).
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The following Lemma shows that computing overproducible species can be very simple in
some cases.

Lemma 4. Let G ⊆ F. The products of the reactions inRE∪G are either catalysts or overproducible.

Proof. Let ri ∈ RE∪G and s be a product of ri. If s ∈ E ∪ G, the Lemma follows directly. If s /∈ E ∪ G,
let a process v such that v[i] = 1 and v[l] = 0 if l 6= i, and vG be a process that overproduces all
species in G. Since v consumes species in E ∪ G only, we have that for sufficiently large α, the process
v(G) = v + αvG overproduces all the species in G. Now, since v produces s, and consumes species in
E ∪ G only, we have that s is overproduced by v(G).

3. On the Types of Change

In dynamical systems, the evolution equation of a system being in state x is given by

0 = F(t, k, x, ẋ, ẍ, ...), (x, ẋ, ẍ, ...)t=0 = c0, (3)

where F is the evolution operator, t represents time, k is a vector of parameters describing the particular
dynamical process, and c0 are the initial conditions. A perturbation is a sudden change from x to
x̄ = x +~ε where~ε is a small vector. The goal of dynamical systems is to study how these perturbations
affect the dynamical evolution of the system. For various cases, the influence of k on such evolution
is also investigated, and more abstract approaches determine classes of evolution operators F where
analytic results concerning the dynamics of the system can be obtained [2].

In traditional dynamical systems theory, there is no clear way to represent a structural change.
Namely, such change would correspond to a change on F. However, there are two problems for
qualifying or quantifying a change on F. First, the algebraic structure of two such operators might be
completely different, so no algebraic comparison can be established in a sensible way. This problem
can be sorted out relying on abstract measures of such as distances induced by norms in abstract
operator spaces. However, a second problem emerges here. Namely, it is not clear how to relate such
abstract distance with a structural change in the system into consideration.

In the language of reaction networks, the analogous of Equation (3) lies at the kinetic level of
representation, and is described by the equation

ẋ = Sv,

where S is the stoichiometric matrix introduced in Section 2, and v usually is a function (whose
functional form depends on the kinetic law) of x, t, and a vector of parameters k. Unfortunately, the
analysis of the dynamics of a reaction network at the kinetic level is as complex as the analysis of
general dynamical systems. Therefore, at this level of representation, there are no major advantages in
using reaction networks over other languages for representing systems.

However, since COT allows for lift information gathered at the stoichiometric level to the
kinetic level (at a reasonable computational cost, see Theorem 1 in [6]), we can focus on exploiting
stoichiometric properties that provide a better understanding at the kinetic level.

At the stoichiometric level, we consider a state vector x and a process v that is simply
a non-negative vector that represents the occurrence of reactions within a certain time frame. Hence,
the change to a new state xv produced by the process v is given by Equation (2):

xv = x + Sv.

Remarkably, the right hand side of Equation (2) provides evidence of the different aspects of the
dynamics of the reaction network universe that can be modified. Namely, x, v, and S. In the first case,
x changes to a new state x̄ 6= x. Such a change can be quantified by the geometrical distance of the
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two vectors (as it is done in dynamical systems). In the second case, v is changed to another process
v̄ 6= v. This is similar to changing the parameters of a dynamical system’s equation. More generally,
we can extend this change by considering a change on the set of permitted (or forbidden) processes Λ.
The set Λ of permitted processes is the analogous of a kinetic law at the stoichiometric level. Indeed,
since the stoichiometric level lacks a kinetic law, we cannot determine what process will occur, but we
can constrain what processes might occur in the reaction network universe by, for example, limiting
the ratios between certain reactions, setting the permitted processes within a convex set, limiting the
minimum/maximum value of particular coordinates of the process vector, etc.

From here, since systems are structurally closed and self-maintaining sets (i.e., organizations),
we have that the set of observable systems depends on the set Λ. A change to the set of permitted
processes will be referred to as a process-structure perturbation. In the third case, S is changed to S̄ 6= S.
Therefore, at least one reaction has been modified, added to, or eliminated from the reaction network
universe. In case S̄ contains new (or eliminates certain) species, we must update the state vector
dimensionality, and thus such change induces a change of state, and in case new reactions are added
(or removed), such change induces a process-structure change. This change, so called topology-structure
perturbation, operationalizes the notion of qualitative change of a reaction network universe.

The process-structure and topology-structure perturbations are both non-trivial ways to change
the structure of a system and both go beyond the notion of perturbation in dynamical systems. In order
to characterize these new types of perturbation, we need to identify a theoretically convenient way to
quantify them so that dynamical concepts related to the notion of structural change (such as resilience,
robustness, adaptivity, etc.) can be put forward.

In what follows, we will advance the structural notions of COT presented in [6]. In particular, we
will develop a Theorem that allows for decomposing the inner structure of a system into a collection of
dynamically independent self-maintaining sets. From here, we can precisely identify the influence of a
structural change in a system.

4. Modularizing the Behavior of a Reaction Network

Let E be the set of catalysts in X, and F its maximal overproducible set. The latter assumption will
simplify the analysis of this section. However, the formal elaboration presented here can be done for a
set X without any prior knowledge about its inner structure. Recall from Definition 9 that, for every
process v applied to X, we can build a process v(F) such that the species in F (and thus in E ∪ F) have
non-negative production. Thus, in order to comprehend the structure of self-maintaining processes in
X, we must focus on the structure of X− (E ∪ F).

Definition 10. Let C = X− (E ∪ F). We call C the potential fragile-circuit of X.

The potential fragile-circuit C of X entails the most sensitive part in the dynamics of X. In fact, note
that, for a species s in C, we can infer that (i) its maximal overproduction is zero (s /∈ F); and (ii) it
cannot be equally consumed and produced in all of the reactions, it participates in (s /∈ E). Therefore,
s must be consumed more than produced by at least one reaction. Hence, if s is not produced more than
consumed by another reaction, then X is not semi-self-maintaining, and thus X is not self-maintaining.

Lemma 5. If C is not semi-self-maintaining with respect toRX , then X is not self-maintaining.

Analyzing the inner structure of potential fragile-circuits reveals interesting features that
contribute to the understanding of organizations.

Suppose that X is self-maintaining, and let s ∈ C, v a self-maintaining process, and r ∈ RX such
that s is a reactant of r. Since X is self-maintaining, s must be the product of another reaction r̄. Note,
however, that we can deduce that at least one reactant s̄ of r̄ is in C. Indeed, suppose no reactant of r̄ is
in C. Then, all the reactants of r̄ are in E ∪ F, and, by Lemma 4, we have that all the products of r̄ are in
E ∪ F. Thus, if no reactant of r̄ is in C, we have that all the products of r̄, and in particular s, would be
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in E ∪ F. This contradicts our assumption that s ∈ C. Therefore, there is at least one reactant s̄ of r̄ in
C. Subsequently, every reaction that produces s̄ has a reactant in C. Hence, we can deduce that every
reaction that is used to produce a species in C has a reactant in C. Since the set of species C is finite, we
have that for any two species s, s̄ ∈ C, we have that either both species are needed to produce each
other, or there are two disjoint sets of reactionsR∗s andR∗s̄ such that self-maintainance of s and s̄ are
verified by process vectors triggering reactions inR∗s andR∗s̄ , respectively.

The previous deduction entails a powerful structural property of self-maintaining reaction
networks that, to the knowledge of the authors, has not been widely acknowledged in the
biochemical literature (with the exception of [11]). In Figure 1, we illustrate the two most
simple cases where such structural property can be used to decompose a reaction network into
dynamically-connected subnetworks.

Figure 1. Note that in (a), the self-maintainance of C1 = {x, y, e} and C2 = {z, w, e} are independent
because e is a catalyst; The same situation occurs in (b) with sets C1 = {x, y, o} and C2 = {z, w, o}
with o an overproducible species. Hence, although X is connected (see Definition 2), the potential
fragile-circuit C = {x, y, w, z} can be partitioned into two dynamically-independent sets {x, y} and {w, z}.

Definition 11. Two species s and s̄ in C are dynamically-connected in X if and only if there exists a sequence
of species s0, ..., sp ∈ C such that s0 = s, sp = s̄ and for all k = 0, ..., p− 1, we have that sk and sk+1 are
directly-connected in X (see Definition 2).

Dynamical-connection entails connection through reactions which have reactants in C. Note
that s, s′ ∈ C can be dynamically-connected in X but not connected in C. For example, consider
the reactions:

∅→ o,

s + o → s′.
(4)

Note that s is dynamically-connected to s′ in {o, s, s′}, but s is not connected to s′ in {s, s′}.
For simplicity, when s and s′ are dynamically-connected in X, we will simply say that s and s′ are
dynamically-connected.

Definition 12. We define dyn(s) as the maximal set of species dynamically-connected to s.

Corollary 2. Let s, s̄ ∈ C. s̄ ∈ dyn(s) if and only if dyn(s) = dyn(s̄).

Corollary 3. Let s, s̄ ∈ C. If dyn(s) 6= dyn(s̄), then dyn(s) ∩ dyn(s̄) = ∅.

Definition 13. Any set C′ ⊆ C s.t C =
⋃

s∈C′
dyn(s) is called a generating set of C. Any minimal cardinality

generating set of C is called a base of C.
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Since any generating set can be reduced up to a base, we will concentrate on the bases of C.
Note that C can have several bases. However, the following Lemma shows that such bases are
all equivalent. Technically speaking, we will show that dyn(·) is an equivalence class of the
dynamically-connected equivalence relation over C. An equivalence relation is a reflexive, symmetric,
and transitive binary relation that allows to partition a set into equivalence classes and simplify
the study of a set in terms of its quotient space [12]. For simplicity, we will not elaborate on more
mathematical details in this line.

Lemma 6. Let D1, D2 be two bases of C. Then, each species in D1 is dynamically-connected to one and only
one species of D2.

Proof. Let s ∈ D1 and suppose that s is not dynamically-connected to any species in D2. By Corollary 2,
we have that dyn(s) is not contained in

⋃
s̄∈D2

dyn(s̄) = C, which entails a contradiction. Then, s is

dynamically-connected to at least one species in D2. Now, suppose there are two species s1, s2 ∈ D2

dynamically-connected to s. Since s1 and s2 are dynamically-connected to s, we have that s1, s2 ∈
dyn(s). Then, by Corollary 2, we have dyn(s1) = dyn(s2). Thus, D2 is not a base of C, which entails
a contradiction.

From now on, let D = {s̄1, ..., s̄d} be a base of C

Definition 14. We define for j = 1, ..., d:

Dj = dyn(s̄j), and

R∗j = RDj∪E∪F −RE∪F.

The set Dj is called the j-th minimal fragile-circuit of C, andR∗j the path of Dj.

Note that minimal fragile-circuits decompose the fragile-circuit into dynamically-connected sets.
For example, in both networks in Figure 1, we have that the minimal fragile-circuits are D1 = {x, y},
and D2 = {w, z}, and the bases are {x, w}, {x, z}, {y, w}, and {y, z}.

Lemma 7. For all i, j ∈ {1, ..., d}, i 6= j impliesR∗i ∩R∗j = ∅

Proof. Suppose that R∗i ∩ R∗j 6= ∅. Thus, there is one reaction r ∈ R∗i ∩ R∗j such that one of
its reactants is in Di or Dj. Without loss of generality, assume a species s ∈ Di is a reactant of r.
Since r ∈ R∗j , we have that s ∈ Dj. Hence, by Corollary 2, we have that Di = Dj, which entails
a contradiction.

Corollary 4.

RX −RE∪F =
d⋃

i=1

R∗s̄i
.

Lemma 7 proves that the paths of the minimal fragile-circuits do not overlap. This implies that
a process v applied to X can be represented as a sum of non-overlapping processes (orthogonal
vectors) applied to the different minimal fragile-circuit Dj, i.e., containing only reactions in the path
R∗j , j = 1, ..., d, plus a process vE∪F (orthogonal to all other processes) applied to E ∪ F.
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Corollary 5. Let v be a process applied to X. Then, there exist processes v1, ..., vd such that

v = vD + vE∪F, with

vD = v1 + ... + vd,
(5)

where |vD · vE∪F| = 0, and for all k, l ∈ {1, ..., d}, it holds |vk · vl | = |vk|2δkl , where · is the component-wise
product and |v| is the Euclidean norm of v.

Proof. The proof works by simple construction. We build first vE∪F by setting vE∪F[i] = v[i] if
ri ∈ RE∪F, and vE∪F[i] = 0 otherwise, for i = 1, ..., n. Since we know by Lemma 7 that for species
s̄1, s̄2 ∈ D, we have that R∗1 ∩R∗2 = ∅, we build vj by setting vj[i] = v[i] if ri ∈ R∗j , and vj[i] = 0
otherwise, for j = 1, ..., d, i = 1, ..., n.

We can now present a decomposition Theorem for reaction networks.

Theorem 1. The reaction network (X,RX) can be partitioned as follows:

X = (E ∪ F) ∪ D1 ∪ · · · ∪ Dd,

RX = RE∪F ∪R∗1 ∪ · · · ∪ R∗d .
(6)

Moreover, X is self-maintaining if and only if Dj is weakly-self-maintaining with respect toR∗j for j = 1, ..., d.

Proof. The first statement is a trivial consequence of Definitions 10 and 13 for partitioning X, and of
Corollary 4 for partitioningRX. For proving the second statement:
⇒: Let v be a vector which verifies the self-maintainance of X. By using Corollary 5, we decompose
the process v = v1 + ... + vd + vE∪F. Since vj contains all the reactions in R∗j , we have vj(F) as in
Definition 9 proves that Dj is weak-self-maintaining w.r.tR∗j , for j = 1, ..., d.
⇐: Let v1, ..., vd be the processes that verify the weak-self-maintainance of Di, for i = 1, ..., d. Then,
the vector v = v1 + ...+ vd verifies the weak-self-maintainance of C w.r.t to ∪d

j=1R∗j . Finally, we have
that v(F) as in Definition 9 proves the self-maintainance of X.

5. Revisiting the Types of Change of a System

Theorem 1 provides a way to identify independent dynamical modules in a system and decompose
the action of a process in the reaction network into independent actions in these modules. From here,
we can target the modules of the systems that become influenced by a structural change in the reaction
network. For the sake of simplicity, we will not present a fully-mathematically detailed formulation of
the types of change of a system, but show some interesting notions and results that advance in this
direction. From now on, we assume that X = E∪ F ∪D1 ∪ · · · ∪Dd is self-maintaining.

In order to proceed with the analysis, we must formalize some notions.

Definition 15. Let v̂E∪F[i] = 1 if ri ∈ RE∪F, and v̂E∪F[i] = 0 otherwise. Similarly, for each j = 1, ..., d
we define v̂j[i] = 1 if ri ∈ R∗j , and v̂j[i] = 0 otherwise. We say v̂E∪F is the unitary process for E∪ F, v̂i is the
unitary process for Di, and v̂X = v̂E∪F + v̂1 + ...+ v̂d is the unitary process in X.

Definition 16. Let Λ ⊂ Rn
≥0. We say that Λ is a set of allowed processes, or process-structure, of (X,RX) if

and only if v ∈ Λ implies v = v · v̂X. For each process-structure Λ, we define

ΛE∪F = {v̄ = v̂E∪F · v, with v ∈ Λ}, and

Λj = {v̄ = v̂j · v, with v ∈ Λ}.
(7)

We call ΛE∪F the process-structure restricted to E∪ F, and Λi the process structure restricted to Di.
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The process-structure Λ represents all the processes that can be applied to X. The restricted
process-structures represent the process-structure when we observe the application of the process in
the decomposition modules (obtained in Theorem 1) only.

Note that in the same way that the process represents the stiochiometric counterpart of the
time-evolution of the reaction network at the dynamical level of representation, the process-structure
is the stiochiometric counterpart of the kinetic law, where a dynamical law is usually a function
K : Rm

≥0×Rn
≥0 → Rn

≥0 that maps a state x ∈ Rm
≥0 of the reaction network and a set of kinetic parameters

k ∈ Rm
≥0 to a set of possible processes K(x, k). In particular, if the set K(x, k) is a singleton (point) for

all pair (x, k), then K is a deterministic kinetic law at the dynamical level of representation. Since in
principle every process is possible, the largest possible process-structure is the set Rn

≥0. However, we
might have to consider a more restricted process-structure in some cases. For example, in order to verify
that X is self-maintaining, we must focus on the smaller set of processes Π(RX). Moreover, dynamical
constraints of diverse nature might forbid certain process, where, for example, some reactions occur
too much with respect to others.

Therefore, the decomposition of the process, first noticed in Corollary 5 introduced in Definition 16
can be used to trace the influence of each of the behavioral modules in the dynamics of the reaction
network, and also to target the modules of the reaction network where a process-structure perturbation
produces an impact.

A perturbation to a process-structure Λ leads to a new process-structure Λ′ that is similar to Λ

according to some geometric criteria. We will not give details on how to formally define a perturbation
in the space of process-structures (a simple example of such criteria can be the distance function
induced by the sup norm). Applying Definition 16, we can also decompose the process-structure Λ′,
and study the influence of the perturbation in the decomposition modules. As an example, we discuss
two examples of process-structure perturbation and summarize them in Table 1.

Table 1. Table of properties associated with a reaction network analysis for a process-structure perturbation.

Λ′ Change Might Create Possible Consequence

Ex. 1 Λ′E∪F ⊂ ΛE∪F F′ ⊂ F Larger minimal fragile-circuits
Ex. 2 Λ′i ⊂ Λi Di is not weak-SM w.r.tR∗i X is not self-maintaining

In the first case, suppose Λ′ is such that Λ′E∪F ⊂ ΛE∪F. In this case, some species s ∈ F
that were overproducible within Λ might not be overproducible within Λ′ anymore. Therefore,
the set of overproducible species F might change to a smaller set F′ ⊂ F. This, in turn, will
modify what species are dynamically-connected. In particular, some pairs of species s1, s2 that
were not dynamically-connected, i.e., they were connected by species s ∈ (F− F′), would become
dynamically-connected. Therefore, some dynamically-connected sets will merge, and some other new
dynamically-connected sets might be created. Thus, the new decomposition of X will have larger
minimal fragile-circuits.

In the second case, suppose Λ′ is such that Λ′i ⊂ Λi. Here, it can be that the self-maintaining
processes of Di become unavailable. Thus, Di becomes not weak-self-maintaining with respect toR∗i
anymore. By Theorem 1, we have that this implies that X is not self-maintaining.

For the case of a topology-structure perturbation, we identify four basic types of perturbation and
explain some of the possible consequences of such perturbations:

(i) Exclusion of a species s ∈ X: the new set X′ = X − {s} induces a new set of reactions RX′ =

RX−s, and the product s in the reactionsRX′ is also eliminated. If s is a catalyst or overproducible
species in X, the decomposition of X′ might eventually have less minimal fragile-circuits than
the decomposition of X. However, it is also possible that some species that were not catalysts or
overproducible in X might become a catalyst or overproducible in X′, creating more minimal
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fragile-circuits in the decomposition of X′. Furthermore, if s is in the potential fragile-circuit of
X, some species in C might dynamically-disconnect in X′, creating more minimal fragile-circuits
in the decomposition of X′.

(ii) Exclusion of a reaction r ∈ RX : note that, in this case, the set of overproducible species can only
become smaller or remain the same, while the set of catalysts can only become larger or remain
the same. Moreover, it can also be that r is crucial for dynamically-connecting certain species.
In such a case, the decomposition can produce more minimal fragile-circuits.

(iii) Inclusion of a reaction with existing species: here, we include a new reaction r ∈ RX.
We identify three basic cases. First, if r becomes part ofRE∪F, then some species in the minimal
fragile-circuits might become overproducible (this, in turn, might produce more modules in the
decomposition of X). Second, it can be that r consumes (or produces) a catalyst. This will reduce
the set of catalysts. Third, r might dynamically-connect species from C that were in different
minimal fragile-circuits, which, in turn, will merge such minimal fragile-circuits.

(iv) Inclusion of a reaction r with a new species s: in this case, the perturbation leads to a new set of
species X ∪ {s} and a new set of reactionsRX∪{s} = RX ∪ {r}. We must first identify whether s
is a catalyst or an overproducible species. If s ∈ C, we must identify the minimal fragile-circuits
that are dynamically-connected. Then, the analysis of this case is equivalent to case (iii).

We summarize these changes and their possible influences in the decomposition of a reaction
network in Table 2. In the light of this analysis, we can see that these four basic types of
topology-structure perturbation provide an adequate but modest categorization with respect to
the influence of a perturbation in the overproducible species and catalyst sets. In order to fully
understand the changes in E and F, and to precisely understand the changes in C, and on the
minimal fragile-circuits Di, a much deeper categorization is needed. For example, we can deepen
in the categorization of type (i), by separating the cases where the species s excluded from the
reaction network is either an overproducible species, a catalyst, or a species from a particular
fragile-circuit. Moreover, we can determine to what minimal fragile-circuits s is connected and
dynamically-connected. With this information. we can understand precisely how such perturbation
would affect the decomposition of the reaction network, and thus its self-maintenance.

Table 2. Table of properties associated with reaction network analysis for a topology-structure
perturbation. The symbols ⊂ (⊆) and ⊃ (⊇) symbols means that the set referred by the column
will become smaller (or equal) and larger (or equal), respectively, after a perturbation. # Min Cyc.
stands for number of minimal cycles, and SM stands for self-maintainance.

Type X RX F E C # Min Cyc. SM

(i) ⊂ ⊂ ⊆ or ⊇ ⊆ or ⊇ ⊆ or ⊇ More/Less ?
(ii) = ⊂ ⊆ ⊇ ⊆ or ⊇ More/Less ?
(iii) = ⊃ ⊇ ⊆ ⊆ or ⊇ More/Less ?
(iv) ⊃ ⊃ ⊇ ⊆ or ⊇ ⊆ or ⊇ More/Less ?

Remarkably, the information necessary to provide a fine-grained analysis of the topology-structure
perturbation, and its relation with the process-structure perturbation, is already confined within the
formal notions introduced to develop the decomposition Theorem 1. Thus, we have a framework
to analyze modern systemic dynamical notions that depend on these types of perturbations such as
resilience, adaptivity, robustness, etc.

For simplicity, we do not elaborate on such fine-grained categorization of perturbations here,
but provide an example that illustrates various possible perturbations in what follows.
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6. Example

In Figure 2, we show an example of a reaction network with speciesM = {s, e, f , s1, ..., s6} and
the reactions:

r1 = s1 → s2,

r2 = s2 + e→ e + s1,

r3 = e + s4 → e + s3,

r4 = f + s3 → s4,

r5 = ∅→ f ,

r6 = f + s6 → s5,

r7 = s5 → s6,

r8 = s→ e,

r9 = e + s→ 2s.

(8)

Figure 2. Example of a reaction network for showing notions of decomposition, process-structure and
topology-structure perturbation. Arrows are labelled by the number of the reaction that they represent,
and, at the end of the arrow, the number of produced species by the reaction is shown only when such
number is larger than one.

Let us first consider the set of species X = M− {s}. Note that E = {e} and F = { f } in X.
Moreover, we have C = D1 ∪ D2 ∪ D3 with D1 = {s1, s2}, D2 = {s3, s4}, and D3 = {s5, s6}. Hence,
we have that a process in v ∈ Λ is decomposed as v = v1 + v2 + v3 + vE∪F, where

The non-zero components of v1 ∈ Λ1 correspond to the reactionsR∗1 = {r1, r2},
The non-zero components of v2 ∈ Λ2 correspond to the reactionsR∗2 = {r3, r4},
The non-zero components of v3 ∈ Λ3 correspond to the reactionsR∗3 = {r6, r7},

The non-zero components of vE∪F ∈ ΛE∪F correspond to the reactionsRE∪F = {r5}.

(9)

For i = 1, 2, 3, the minimal fragile-circuit Di, is weak-self-maintaining if and only if there exists
a process vi such that its non-zero coordinates are all equal. Note that since f is consumed by
the weak-self-maintaining processes of the minimal fragile-circuits D2 and D3, the process v that
self-maintains X requires that vE∪F[5] ≥ v2 + v3. By Theorem 1, we have that if such processes
v1, v2, v3, and vE∪F exist in the respective restricted process structures Λi, i = 1, 2, 3, and ΛE∪F, then X
is self-maintaining.
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In summary, X is self-maintaining if and only if

v1[1] = v1[2] = v1, v1[i] = 0, otherwise, (10)

v2[3] = v2[4] = v2, v2[i] = 0, otherwise, (11)

v3[6] = v3[7] = v3, v3[i] = 0, otherwise, (12)

vE∪F[5] ≥ v2 + v3, vE∪F[i] = 0, otherwise, i = 1, ..., n. (13)

Consider a process-structure perturbation that leads to a new set of processes Λ′ 6= Λ, and the
possible cases:

• If Λ′ does not allow Equation (10), X is not self-maintaining, and the set X′1 = X− D1 becomes
the largest self-maintaining set.

• If Λ′ does not allow Equation (11), X is not self-maintaining, and the set X′2 = X− D2 becomes
the largest self-maintaining set. Also, note that X′2 is a disconnected set.

• If Λ′ does not allow Equation (12), X is not self-maintaining, and the set X′3 = X− D3 becomes
the largest self-maintaining set.

• If Λ′ does not allow Equation (13), X is not self-maintaining. Moreover, in case vE∪F[5] ≥ v2,
the set X′3 = X − D3 becomes the largest self-maintaining set, and in case vE∪F[5] < v2 X′4 =

X− (D3 ∪ D2) becomes the largest self-maintaining set inside X, respectively.

We now consider the inclusion of the species s and reactions r8 and r9 as a topology-structure
perturbation. Since r8 and r9 consumes and produces the species e, respectively, we have that e is
not a catalyst in M, and thus the minimal fragile-circuits D1 and D2 merge into a new minimal
fragile-circuit D4 = D1 ∪ D2 ∪ {s} in the decomposition ofM. Thus,M = F ∪ D3 ∪ D4.

The analysis of self-maintainance forM can be done in an analogous way to the analysis for
X by defining the restricted process structure Λ4 of the minimal fragile-circuit D4. Note, however,
that if Λ4 does not allow processes such that D4 is not weak-self-maintaining, e.g., when the process
vector v4 cannot have equal values for the coordinates representing r8 and r9, we have that the largest
self-maintaining set insideM is D3 ∪ F.

Therefore, we can propose thatM is more sensitive than X to a process-structure perturbation
because the decomposition of X has more minimal fragile-circuits than the decomposition ofM.

7. Conclusions

We have extended the application of reaction networks, and its COT implementation,
as a representational framework for systemic modeling [6]. In this framework, a system corresponds to
a sub-network that holds structural properties that ensure its qualitative identity (structurally closed)
and observability (self-maintaining), i.e., organizations in the COT sense. Technically speaking,
organizations characterize the global invariants of the local dynamics and can be computed at
a computationally tractable cost. In particular, we developed a formal framework to study structural
changes of a system. A structural change goes beyond the change of state, and encompasses changes
that modify the inner functioning rules of the system or the very entities defining the system.

We have introduced the notion of dynamical-connectivity, which explains when two species s1

and s2 are co-dependent for verifying the self-maintenance of a set X that contains them. This notion,
which strongly depends on the overproducible species and catalysts, can be applied to maximally
decompose the set X into a collection of minimal fragile-circuits, whose weak-self-maintenance implies
the self-maintenance of X (Theorem 1). The decomposition Theorem allows for formalizing two types of
structural perturbation that extend the notion of perturbation usually applied in the field of dynamical
systems: process-structure and topology-structure perturbation. A process-structure perturbation
represents a change of the possible processes in the reaction network universe. The topology-structure
perturbation represents a change in the reaction network universe itself, i.e., more/less species and/or
more/less reactions. We showed how the decomposition allows for precisely identifying the impact of
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a perturbation. In particular, a perturbation can either affect a minimal fragile-circuit Di and/or the set
of catalysts and overproducible species E ∪ F. When the perturbation affects a minimal fragile-circuit,
the analysis of its impact can be studied within the minimal fragile-circuit, while when the perturbation
affects E ∪ F, the overall decomposition structure becomes affected. A general perturbation combines
effects in some minimal fragile-circuits as well as in E∪ F. This, in turn, modifies the set of organizations
in the perturbed reaction network. Hence, by comparing the sets of organizations before and after
the perturbation, we obtain a picture of the effects of the perturbation in the long-term dynamical
properties of the system.

We propose that the structural perturbations introduced in this paper, and the analysis of such
perturbations under the light of the decomposition Theorem, can be used as a starting point for the
formal study of modern systemic dynamical notions such as resilience, adaptivity, robustness, etc.
For example, resilience is generally understood as the ability of a system to cope with change. However,
this statement is hard to formalize because, since the functioning of a system is understood as a complex
process, it is not clear what is a change, or how we identify the part of the system affected by a change,
and thus there is no formal framework for defining resilient response-mechanisms. In our framework,
we define the notion of structural perturbation that encompass the idea of ‘change’, vaguely defined
in resilience literature. Moreover, since we are able to precisely identify the impact of a structural
perturbation, we can characterize response mechanisms within the process-structure.

In order to fully develop the mathematical framework to study modern systemic notions, various
aspects must be considered. In particular, a deeper characterization of the process-structure and
topology-structure perturbations is needed. Such characterization requires combining geometrical
properties of the process-structure Λ with structural information of the reaction network. To do so,
not only are more theoretical notions needed, but also an algorithmic framework for computing these
theoretical notions for moderately large reaction networks.

As a final comment, we believe that the language of reaction networks could provide a powerful
formal framework to open up systemic modeling and systemic thinking to the scientific domain.
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