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 A B S T R A C T

An understanding of quantum theory in terms of new, underlying descriptions capable of explaining the 
existence of non-classical correlations, non-commutativity of measurements and other unique and counter-
intuitive phenomena remains still a challenge at the foundations of our description of physical phenomena. 
Among some proposals, the idea that quantum states are essentially states of knowledge in a Bayesian 
framework is an intriguing possibility due to its explanatory power. In this work, the formalism of quantum 
theory is derived from the application of Bayesian probability theory to ‘‘fragile’’ systems, that is, systems 
that are perturbed by the measurement. Complex Hilbert spaces, non-commuting operators and the trace 
rule for expectations all arise naturally from the use of linear algebra to solve integral equations involving 
classical probabilities over hidden variables. The non-fragile limit of the theory, where all measurements are 
commutative and the theory becomes analogous to classical statistical theory is discussed as well.
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Introduction

The meaning and the interpretation of quantum theory has been a 
controversial issue in physics because it suggests a non-local nature of 
our universe. In their seminal paper in 1935, Einstein, Podolsky and 
Rosen [1](EPR) asserted that quantum theory was incomplete, because 
of the impossibility of predicting complementary quantities such as 

∗ Corresponding author.
E-mail addresses: yasmin.navarrete@gmail.com, y.navarretediaz@uandresbello.edu (Y. Navarrete).

position and velocity of a particle at the same time. Einstein, in the 
EPR paper [2], argued that this uncertainty in momentum should not 
be a problem if quantum mechanics provided a complete description of 
‘‘reality’’. He believed in the existence of ‘‘elements of reality’’, which 
were properties of particles that had definite values, even if not all of 
these values could be simultaneously measured (as per Heisenberg’s 
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Uncertainty Principle). So, he concluded that there must be hidden 
variables (undetermined parameters) governing particle behavior that, 
if known, would allow for a complete description of their states.

Moreover, quantum entanglement introduced the notion of non-
locality, which was later discussed by means of Bell’s theorem [2]. 
Entangled systems manifest non-classical correlations between out-
comes performed on physical systems that are far apart, but such that 
they have interacted in the past. It is a fundamental phenomenon in 
quantum mechanics and it has become a central feature of this field. 
Entanglement is sometimes described as ‘‘spooky action at a distance’’ 
due to its non-intuitive and counterintuitive nature. In other words, the 
properties of entangled particles are interconnected, even when they 
are separated by vast distances.

When experiments demonstrate violations of Bell’s inequalities, it 
implies that the observed correlations between entangled particles 
(such as in the case of quantum entanglement experiments) cannot be 
explained by any theory that maintains both locality and realism. This 
leads to the conclusion that quantum mechanics, if to be understood 
in terms of hidden variables (additional parameters that determine the 
outcomes of quantum measurements), cannot be a local theory.

As a consequence of experimental violations of Bell’s inequality [3] 
it was concluded that quantum theory, where correlations between en-
tangled particles cannot be explained by any theory that maintains both 
locality and realism, is therefore to be formulated in terms of hidden 
variables, and has to be a non-local theory. In order to attempt to fill 
this void in the understanding of the foundations of quantum theory, a 
number of hidden-variables theories [2,4–7] have been proposed.

Furthermore, recently there have been interest in successful appli-
cations of the mathematical formalism of quantum theory in widely 
different contexts, both in Physics and outside of it. For instance, in 
the fields of quantum cognition [8], machine learning [9], signal pro-
cessing [10], classical hydrodynamical systems [11,12]. Despite their 
success, a formal theoretical justification of the application of quantum 
theory to those systems outside of the traditional quantum realm is still 
lacking.

In this work, we will formulate a theory of fragile systems [13] 
(systems which are modified by the measurement) based on hidden 
variables and derived from the application of Bayesian probability. We 
will recover the formalism of quantum theory from first principles, in 
particular, we will obtain that:

• The states after a measurement correspond to invariants of a 
linear transformation.

• This transformation leads to an eigenvalue equation involving a 
linear operator in Hilbert space.

• Expectations are given by the trace rule of the density matrix 
formalism.

Fragile systems

In simple terms, a fragile system is one that is affected by measure-
ment performed on it. This distinguishes it from a non-fragile (classical) 
system, which is not modified upon measurement (we will think of a 
measurement as an interaction between two systems where one of them 
acquires information about the other).

Because any system (being fragile or not) possesses information, we 
will think of a system as a ‘‘black box’’ that can be found in different
internal states, to be denoted by 𝜆. In general 𝜆 contains many degrees 
of freedom, but we will not make use of that inner structure here. The 
internal state 𝜆 (which changes whenever a measurement is performed 
on the system) contains all the information necessary to describe the 
system.

We will consider a system with several real-valued, discrete observ-
ables 𝐴, 𝐵, 𝐶, . . . . To each observable 𝑥 we will associate a real function 
𝑅𝑥. For instance, the observable 𝐴 may yield a value given by a real 
function 𝑅 (𝜆) ∈ {𝑎 ,… , 𝑎 }. In this case, the statement 𝑎 = 𝑅 (𝜆)
𝐴 1 𝑁 𝑘 𝐴

2 
Fig. 1. Hidden variables and the function 𝑅𝐴(𝜆): Each region corresponds to a value 
of an observable related with a distribution of hidden variables.

means that a measurement of 𝐴 when the system is found in its internal 
state 𝜆 produced the value 𝑎𝑘.

The crucial difference between a fragile system and a non-fragile 
one is that, in a fragile system, access to the internal state 𝜆 is 
impossible, because it is precisely this internal state which is modi-
fied by the measurement. We cannot, therefore, assume that we can 
evaluate in practice 𝑅𝐴 on the internal state 𝜆 to obtain the outcome 
of the measurement since every measurement outcome has associated 
a region of possible state 𝜆 as it is depicted in Fig.  1

As the modification of the state 𝜆 depends on the details of the 
environment doing the measurement (which we do not know or control 
with accuracy), the outcome of measurement is unavoidably stochastic, 
and a mathematical formulation requires probability theory.

In summary, a fragile system is one that (a) gets modified upon 
a measurement (b) when it is measured, the system remains in one 
‘‘macroscopic’’ state and (c) its measurable properties have finite out-
comes.

Probability theory

As we do not have exact knowledge of the internal state 𝜆, we can 
only assign a probability distribution over it, let us say 𝑃 (𝜆|𝑆), in our 
state of knowledge 𝑆. Unlike non-fragile systems, in a fragile system 
there is no state of knowledge  corresponding to an infinitely sharp 
peak, 𝑃 (𝜆|J ) = 𝛿(𝜆− 𝜆0). Neither can we know the exact modification 
that a measurement will do on the internal state 𝜆, thus for an observ-
able 𝐴 we can only assign a transition probability 𝑃 (𝜆′|𝜆,𝐴) of the final 
internal state 𝜆′ given the initial state 𝜆 and that a measurement of 𝐴
has occurred.

By the application of the marginalization rule of probability [14], 
we see that if we are in a state of knowledge 𝑆 before a measurement 
of 𝐴 is made, after the measurement the new state of knowledge 𝑆′ will 
be given by 

𝑃 (𝜆′|𝑆′) = ∫ 𝑑𝜆𝑃 (𝜆|𝑆)𝑃 (𝜆′|𝜆,𝐴) = 𝑃 (𝜆′|𝑆,𝐴), (1)

so that 𝑆′ = 𝑆 ∧ 𝐴 (that is the previous state S and the fact that 𝐴
has been measured). In the particular case of a non-fragile system, the 
internal state 𝜆 is not modified by the measurement of 𝐴, and therefore 
𝑃 (𝜆′|𝜆,𝐴) = 𝛿(𝜆′ − 𝜆), and we have thus 𝑃 (𝜆|𝑆′) = 𝑃 (𝜆|𝑆).

We are going to consider the situation after a measurement of 𝐴
yields the value 𝑎 , i.e. when we have fixed points of this setting. Bayes’ 
𝑘
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theorem [14] tells us that our state of knowledge must agree with the 
probability rules, 

𝑃 (𝜆|𝑎𝑘) =
𝑃 (𝑎𝑘|𝜆)𝑃 (𝜆|J0)

𝑃 (𝑎𝑘|J0)
, (2)

wherein J0 is the initial state of knowledge. So we have 

𝑃 (𝑎𝑘|J0) = ∫ 𝑑𝜆𝑃 (𝜆|J0)𝛿(𝑅𝐴(𝜆), 𝑎𝑘). (3)

This implies our state is one of complete knowledge of 𝑅𝐴. We will 
postulate that the prior probability of the internal states 𝑃 (𝜆|J0) is flat, 
and then Eq. (2) reduces to 

𝑃 (𝜆|𝑎𝑘) =
𝛿(𝑅𝐴(𝜆), 𝑎𝑘)
𝛺𝐴(𝑎𝑘)

=

⎧

⎪

⎨

⎪

⎩

1
𝛺𝐴(𝑎𝑘)

if 𝑅𝐴(𝜆) = 𝑎𝑘,

0 if 𝑅𝐴(𝜆) ≠ 𝑎𝑘.
(4)

where 𝛺𝐴(𝑎𝑘) = ∫ 𝑑𝜆𝛿(𝑅𝐴(𝜆), 𝑎𝑘) is the density of internal states with 
given value of 𝑅𝐴. The fact that 𝑃 (𝜆|𝑎𝑘) forbids all values of 𝜆 with 
𝑅𝐴 ≠ 𝑎𝑘 implies that two consecutive measurements of the same 
observable 𝐴, without any perturbation in between, will yield the 
same outcome 𝑎𝑘. From this it follows that the state of knowledge 
after a measurement must be an invariant (i.e. an ‘‘eigenfunction’’) 
of the transformation 𝑆 → 𝑆′ given by Eq. (1). That is, if we define 
𝑔𝑘(𝜆) ∶= 𝑃 (𝜆|𝑎𝑘) as the state of knowledge, after obtaining the outcome 
𝑎𝑘 in the measurement of 𝐴, we must have that 𝑔𝑘 is unaffected by the 
transformation, so 

𝑔𝑘(𝜆′) = ∫ 𝑑𝜆𝑔𝑘(𝜆)𝑃 (𝜆′|𝜆,𝐴). (5)

Obviously, Eq. (5) is automatically true for all 𝑔𝑘(𝜆) in a non-fragile 
system as 𝑃 (𝜆′|𝜆,𝐴) = 𝛿(𝜆′ − 𝜆). In general there is only a finite set of 
functions 𝑔𝑘 that are solutions of Eq. (5).

Representation in terms of a complete basis

In this section we introduce the use of a notation in terms of 
linear algebra, in order to bring the notation in the natural language 
of quantum theory. We can construct a complete, orthonormal basis 
{𝜙1(𝜆),… , 𝜙𝑁 (𝜆)} for the probabilities 𝑃 (𝜆|𝑆), as follows. We introduce 
a new observable 𝐸 with possible outcomes 𝑒1,… , 𝑒𝑁 . Then, using the 
marginalization rule and replacing 𝑃 (𝜆|𝑒𝑘) according to Eq. (4) for 𝐸
instead of 𝐴, we have, 

𝑃 (𝜆|𝑆) =
𝑁
∑

𝑘=1
𝑃 (𝜆|𝑒𝑘)𝑃 (𝑒𝑘|𝑆) =

𝑁
∑

𝑘=1

𝛿(𝑅𝐸 (𝜆), 𝑒𝑘)
𝛺𝐸 (𝑒𝑘)

𝑃 (𝑒𝑘|𝑆). (6)

Now let us define the basis functions 

𝜙𝑖(𝜆) ∶=
𝛿(𝑅𝐸 (𝜆), 𝑒𝑖)
√

𝛺𝐸 (𝑒𝑖)
, (7)

although this is not the only possible choice: we can propose different 
orthonormal functions (e.g. complex functions). Taking up the formu-
lation given in Eq. (7) 𝑃 (𝜆|𝑆) is written in this basis with coefficients 
𝑣𝑖, i.e., 

𝑃 (𝜆|𝑆) =
𝑁
∑

𝑖=1
𝑣𝑖𝜙𝑖(𝜆). (8)

This fixes the coefficients 𝑣𝑖 = 𝑃 (𝑒𝑖|𝑆)∕
√

𝛺𝐸 (𝑒𝑖) according to Eq (6). 
Because the function 𝑅𝐸 (𝜆) is single-valued, 𝜙𝑖(𝜆)𝜙𝑗 (𝜆) = 0 for any 𝜆 if 
𝑖 ≠ 𝑗. Furthermore, 𝜙𝑖(𝜆)2 = 𝑃 (𝜆|𝑒𝑖), so the basis is orthonormal, that 
is, 

∫ 𝑑𝜆𝜙𝑖(𝜆)𝜙𝑗 (𝜆) = 𝛿𝑖𝑗 . (9)

Expanding also 𝑃 (𝜆′|𝑆′) in terms of this basis as 

𝑃 (𝜆′|𝑆′) =
𝑁
∑

𝑤𝑗𝜙𝑗 (𝜆′), (10)

𝑗=1

3 
we can represent the states of knowledge 𝑆 and 𝑆′ by the vectors 
𝒗 = (𝑣1,… , 𝑣𝑁 ) and 𝒘 = (𝑤1,… , 𝑤𝑁 ), respectively. We show in the 
appendix A that Eq. (1) is equivalent to the matrix equation 
𝒘 = T𝐴 ⋅ 𝒗, (11)

with components 

𝑤𝑘 =
𝑁
∑

𝑖=1
𝑇 (𝐴)
𝑘𝑖 𝑣𝑖, (12)

where we have defined the matrix T𝐴 with elements 

𝑇 (𝐴)
𝑖𝑗 = ∫ 𝑑𝜆𝑑𝜆′𝜙𝑖(𝜆′)𝑃 (𝜆′|𝜆,𝐴)𝜙𝑗 (𝜆). (13)

The fixed points of the transformation, namely the functions 𝑔𝑘(𝜆), 
are now encoded as the eigenvectors 𝒖𝑘 (with eigenvalue 1) such that 
𝒖𝑘 = T𝐴 ⋅ 𝒖𝑘. The matrix T𝐴 is the transformation which allows us 
to obtain the fixed points of the system for the observable 𝐴. On the 
other hand, we see that we can obtain an analogous operator A leading 
to the necessary transformation to obtain also the outcomes of the 
measurement as its eigenvalues. The matrix elements 𝐴𝑖𝑗 are given by 
(see Section Appendix B ‘‘The eigenvalue equation for the matrix A’’), 

𝐴𝑖𝑗 = ∫ 𝑑𝜆𝑑𝜆′𝑅𝐴(𝜆)𝜙𝑖(𝜆′)𝑃 (𝜆′|𝜆,𝐴)𝜙𝑗 (𝜆), (14)

which then allow us to write the eigenvalue problem as 
𝑎𝑖𝒖𝑖 = A ⋅ 𝒖𝑖. (15)

The matrix elements 𝐴𝑖𝑗 are real numbers, because the function 
𝑅𝐴(𝜆) and the basis functions {𝜙𝑖(𝜆)} are real. However, in general 
it can be more convenient to express the eigenvalue problem in an 
arbitrary complex basis {𝜓𝑖(𝜆)} since a real matrix can have complex 
eigenvectors: complex eigenvectors typically appear in conjunction 
with complex eigenvalues [15], so that 

A =
𝑁
∑

𝑖=1
𝑎𝑖𝒖𝑖𝒖𝑇𝑖 →

𝑁
∑

𝑖=1
𝑎𝑖𝒄𝑖𝒄∗𝑇𝑖 . (16)

with 𝒄𝑘 a complex vector of dimension 𝑁 , namely the coefficients of 
𝜙𝑘(𝜆) in the complex basis {𝜓𝑖}. In this complex representation, the 
matrix T𝐴 is unitary, and A is Hermitian.

Density matrix formalism

In this section we will depict the density matrix formalism in order 
to express and to demonstrate how the expectation value is obtained 
as it is formulated in quantum mechanics, from the point of view of 
probability theory. Recall that in the von Neumann formulation [16] 
of quantum theory, the expected value of an Hermitian operator 𝐴̂
associated with an observable 𝐴 is given by the trace rule, 
⟨

𝐴̂
⟩

∶= Tr
(

𝜌̂𝐴̂
)

, (17)

where 𝜌̂ is a density operator. In our case, for an arbitrary state of 
knowledge 𝑆 we can write the expectation value of the measurement 
𝐴 as 
⟨

𝑅𝐴
⟩

𝑆
= ∫ 𝑑𝜆𝑅𝐴(𝜆)𝑃 (𝜆|𝑆) =

𝑁
∑

𝑖=1
𝑎𝑖𝑃 (𝑎𝑖|𝑆), (18)

where in the last equality we have used ∫ 𝑑𝜆𝑅𝐴(𝜆)𝑃 (𝜆|𝑎𝑖) = 𝑎𝑖. Now, 
recognizing that the {𝑎𝑖} are the eigenvalues of the matrix A, as given 
by Eq. (34), with corresponding eigenvectors 𝒖𝑖, we can write them as 
𝑎𝑖 = (𝒖𝑖)𝑇A𝒖𝑖 or, equivalently, we can use the spectral representation 
of A, namely,

A =
𝑁
∑

𝑖=1
𝑎𝑖𝑢𝑖(𝑢𝑖)𝑇 .

which are known as quadratic forms in statistics [17].
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Then, the expectation in state 𝑆 is 
⟨

𝑅𝐴
⟩

𝑆
=

𝑁
∑

𝑖=1
𝑝𝑖(𝒖𝑖)𝑇A𝒖𝑖 =

∑

𝑙,𝑚
𝜌𝑚𝑙𝐴𝑙𝑚 = Tr (𝜌A), (19)

with 𝑝𝑖 = 𝑃 (𝑎𝑖|𝑆). The density matrix 𝜌 associated to the state of 
knowledge 𝑆 is defined as 

𝜌 =
𝑁
∑

𝑖=1
𝑝𝑖𝒖𝑖𝒖𝑇𝑖 . (20)

This is a properly defined density matrix because the 𝑝𝑖 are proba-
bilities of discrete propositions, non-negative and adding up to 1. We 
can see that every system where we can write the expectation values 
of its properties in terms of the quadratic forms in Eq. (19) and leading 
to non-commutative operators, can be considered as a fragile system.

Conclusions

We have shown that fragile systems with discrete properties can 
be analyzed in terms of genuine quantum theory, complete with non-
commuting operators [18] and a density matrix formalism in complex 
Hilbert space. Since Bayesian degrees of belief are restricted by the 
rules of inference, and one of the aims of Basyesinism is the search 
for methods to translate information into probability assignments [19] 
while on the other hand any subjective state of knowledge about 
a quantum system can be summarized in a density operator 𝜌. In 
other words, the probabilities of measurement outcomes for a quantum 
system can be expressed as the trace of the product of a density operator 
and a projection operator corresponding to the measurement being 
performed.

Our derivation suggest the possibility of reducing most, if not all, 
of the content of quantum theory to the axiom: systems are perturbed 
when measured. This insight might be useful in developing necessary or 
sufficient conditions for violations of Bell’s theorem in hidden-variable 
theories. As a matter of fact, the goal was to describe systems that 
are modified with the observation, in which quantum mechanics it is 
a particular case of this theory, in this sense our framework does not 
depend on the scale of the phenomena to be studied.

This not only gives a strong probabilistic justification for the fact 
that Nature itself seems to be described by quantum theory, but it also 
opens the possibility of justifying the use of the structure of quantum 
theory as an inference tool in problems involving fragile systems out-
side physics, in areas such as biology, data analysis [20], dynamical 
systems [11] among others. For instance, it would be possible to apply 
this tool to biological models, under the perspective of autopoietic sys-
tems [21] having self-modifying properties. There is also the interesting 
possibility of applying our results as a formal justification of the recent 
idea of quantum cognition [8] in which the object of study is human 
logic and human decisions, as well as in conductual psychology, where 
it is possible to modify the behavior of an individual by the observation 
of themselves.
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Appendix A Obtaining the linear transformation matrix T𝑨

We introduce the basis functions {𝜙𝑖} into Eq. (7), so we can write 
Eq. (1) as 
𝑛
∑

𝑗=1
𝑤𝑗𝜙𝑗 (𝜆′) = ∫ 𝑑𝜆

𝑛
∑

𝑖=1
𝑣𝑖𝜙𝑖(𝜆)𝑃 (𝜆′|𝜆,𝐴). (21)

Multiplying both sides of the Eq. (21) by 𝜙𝑘(𝜆′) and integrating over 
𝜆′, we have 
𝑛
∑

𝑗=1
𝑤𝑗 ∫ 𝑑𝜆′𝜙𝑗 (𝜆′)𝜙𝑘(𝜆′) =

𝑛
∑

𝑖=1
𝑣𝑖 ∫ 𝑑𝜆𝑑𝜆′𝜙𝑖(𝜆)𝑃 (𝜆′|𝜆,𝐴)𝜙𝑘(𝜆′). (22)

Now, using the orthonormality condition (Eq. (9)) the left-hand side 
of Eq. (22) reduces to 
𝑛
∑

𝑗=1
𝑤𝑗 ∫ 𝑑𝜆′𝜙𝑗 (𝜆′)𝜙𝑘(𝜆′) = 𝑤𝑘, (23)

which then can be written as follows, 

𝑤𝑘 =
𝑛
∑

𝑖=1
𝑣𝑖 ∫ 𝑑𝜆𝑑𝜆′𝜙𝑖(𝜆)𝑃 (𝜆′|𝜆,𝐴)𝜙𝑘(𝜆′). (24)

Defining the matrix elements of T𝐴 as 

𝑇 (𝐴)
𝑖𝑗 = ∫ 𝑑𝜆𝑑𝜆′𝜙𝑖(𝜆′)𝑃 (𝜆′|𝜆,𝐴)𝜙𝑗 (𝜆), (25)

we can readily obtain the matrix equation corresponding to Eq. (1), 
namely 

𝑤𝑘 =
𝑛
∑

𝑖=1
𝑇 (𝐴)
𝑘𝑖 𝑣𝑖. (26)

Appendix B The eigenvalue equation for the matrix A

For this we instead use the quantity: 

𝑄(𝜆′) ∶= ∫ 𝑑𝜆𝑅𝐴(𝜆)𝑃 (𝜆|𝑆)𝑃 (𝜆′|𝜆,𝐴), (27)

such that for 𝑆 = 𝑎𝑘, 𝑃 (𝜆|𝑆) = 𝑃 (𝜆|𝑎𝑘) = 𝑔𝑘(𝜆). According to Eq. (4), 
𝜆 has zero probability if 𝑅𝐴(𝜆) ≠ 𝑎𝑘. Considering this, we see that for 
𝑃 (𝜆|𝑆) = 𝑔𝑘(𝜆) it must hold that 

𝑄(𝜆′) = 𝑎𝑘 ∫ 𝑑𝜆𝑔𝑘(𝜆)𝑃 (𝜆′|𝜆,𝐴) = 𝑎𝑘𝑔𝑘(𝜆′), (28)

based on the fixed points of the equation, where the second equality 
holds because of Eq. (5). Finally Eq. (27) yields 

𝑎𝑘𝑔𝑘(𝜆′) = ∫ 𝑑𝜆𝑅𝐴(𝜆)𝑔𝑘(𝜆)𝑃 (𝜆′|𝜆,𝐴). (29)

At this point we can write 𝑔𝑘 in terms of the basis {𝜙𝑖} on both sides, 
obtaining 

𝑎𝑘
𝑛
∑

𝑙=1
𝑢𝑙𝜙𝑙(𝜆′) =

𝑛
∑

𝑗=1
𝑢𝑗 ∫ 𝑑𝜆𝑅𝐴(𝜆)𝜙𝑗 (𝜆)𝑃 (𝜆′|𝜆,𝐴). (30)

where 

𝑔𝑘(𝜆) =
𝑛
∑

𝑖=1
𝑢𝑖𝜙𝑖(𝜆). (31)

Multiplying both sides by 𝜙𝑖(𝜆′) and integrating over 𝜆′ we have 

∫ 𝑑𝜆′𝑎𝑘
𝑛
∑

𝑙=1
𝑢𝑙𝜙𝑙(𝜆′)𝜙𝑖(𝜆′) = ∫ 𝑑𝜆′

𝑛
∑

𝑗=1
𝑢𝑗 ∫ 𝑑𝜆𝑅𝐴(𝜆)𝜙𝑗 (𝜆)𝑃 (𝜆′|𝜆,𝐴)𝜙𝑖(𝜆′),

(32)
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therefore, the elements of the 𝐴𝑖𝑗 are given by 

𝐴𝑖𝑗 = ∫ 𝑑𝜆𝑑𝜆′𝑅𝐴(𝜆)𝜙𝑖(𝜆′)𝑃 (𝜆′|𝜆,𝐴)𝜙𝑗 (𝜆), (33)

and after using the orthonormality on the left-hand side, we can finally 
arrive at the eigenvalue problem 
A ⋅ 𝒖𝑖 = 𝑎𝑖𝒖𝑖. (34)

Data availability

No data was used for the research described in the article.
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